Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 161(5): 960-961, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000474

RESUMO

Enzymes of the tubulin tyrosine ligase-like (TTLL) family posttranslationally modify and thereby mark microtubules by glutamylation, generating specific recognition sites for microtubule-interacting proteins. Garnham et al. report the first structure of a TTLL protein alone and in complex with microtubules, elucidating their mechanism of action.


Assuntos
Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Animais , Humanos
2.
EMBO J ; 40(18): e108004, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34313341

RESUMO

Kinetochores form the link between chromosomes and microtubules of the mitotic spindle. The heterodecameric Dam1 complex (Dam1c) is a major component of the Saccharomyces cerevisiae outer kinetochore, assembling into 3 MDa-sized microtubule-embracing rings, but how ring assembly is specifically initiated in vivo remains to be understood. Here, we describe a molecular pathway that provides local control of ring assembly during the establishment of sister kinetochore bi-orientation. We show that Dam1c and the general microtubule plus end-associated protein (+TIP) Bim1/EB1 form a stable complex depending on a conserved motif in the Duo1 subunit of Dam1c. EM analyses reveal that Bim1 crosslinks protrusion domains of adjacent Dam1c heterodecamers and promotes the formation of oligomers with defined curvature. Disruption of the Dam1c-Bim1 interaction impairs kinetochore localization of Dam1c in metaphase and delays mitosis. Phosphorylation promotes Dam1c-Bim1 binding by relieving an intramolecular inhibition of the Dam1 C-terminus. In addition, Bim1 recruits Bik1/CLIP-170 to Dam1c and induces formation of full rings even in the absence of microtubules. Our data help to explain how new kinetochore end-on attachments are formed during the process of attachment error correction.


Assuntos
Cinetocoros/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Saccharomycetales/fisiologia , Segregação de Cromossomos , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , Fosforilação , Ligação Proteica , Fuso Acromático/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35105815

RESUMO

Activation of the GTPase Rab7/Ypt7 by its cognate guanine nucleotide exchange factor (GEF) Mon1-Ccz1 marks organelles such as endosomes and autophagosomes for fusion with lysosomes/vacuoles and degradation of their content. Here, we present a high-resolution cryogenic electron microscopy structure of the Mon1-Ccz1 complex that reveals its architecture in atomic detail. Mon1 and Ccz1 are arranged side by side in a pseudo-twofold symmetrical heterodimer. The three Longin domains of each Mon1 and Ccz1 are triangularly arranged, providing a strong scaffold for the catalytic center of the GEF. At the opposite side of the Ypt7-binding site, a positively charged and relatively flat patch stretches the Longin domains 2/3 of Mon1 and functions as a phosphatidylinositol phosphate-binding site, explaining how the GEF is targeted to membranes. Our work provides molecular insight into the mechanisms of endosomal Rab activation and serves as a blueprint for understanding the function of members of the Tri Longin domain Rab-GEF family.


Assuntos
Membrana Celular/metabolismo , Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , proteínas de unión al GTP Rab7/metabolismo , Membrana Celular/genética , Chaetomium/genética , Proteínas Fúngicas/genética , Complexos Multiproteicos/genética , proteínas de unión al GTP Rab7/genética
4.
PLoS Pathog ; 18(1): e1010182, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986192

RESUMO

The type VI secretion system (T6SS) is a widespread protein export apparatus found in Gram-negative bacteria. The majority of T6SSs deliver toxic effector proteins into competitor bacteria. Yet, the structure, function, and activation of many of these effectors remains poorly understood. Here, we present the structures of the T6SS effector RhsA from Pseudomonas protegens and its cognate T6SS spike protein, VgrG1, at 3.3 Å resolution. The structures reveal that the rearrangement hotspot (Rhs) repeats of RhsA assemble into a closed anticlockwise ß-barrel spiral similar to that found in bacterial insecticidal Tc toxins and in metazoan teneurin proteins. We find that the C-terminal toxin domain of RhsA is autoproteolytically cleaved but remains inside the Rhs 'cocoon' where, with the exception of three ordered structural elements, most of the toxin is disordered. The N-terminal 'plug' domain is unique to T6SS Rhs proteins and resembles a champagne cork that seals the Rhs cocoon at one end while also mediating interactions with VgrG1. Interestingly, this domain is also autoproteolytically cleaved inside the cocoon but remains associated with it. We propose that mechanical force is required to remove the cleaved part of the plug, resulting in the release of the toxin domain as it is delivered into a susceptible bacterial cell by the T6SS.


Assuntos
Proteínas de Bactérias , Pseudomonas , Sistemas de Secreção Tipo VI
5.
Nature ; 563(7730): 209-213, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30232455

RESUMO

Tc toxins secrete toxic enzymes into host cells using a unique syringe-like injection mechanism. They are composed of three subunits, TcA, TcB and TcC. TcA forms the translocation channel and the TcB-TcC heterodimer functions as a cocoon that shields the toxic enzyme. Binding of the cocoon to the channel triggers opening of the cocoon and translocation of the toxic enzyme into the channel. Here we show in atomic detail how the assembly of the three components activates the toxin. We find that part of the cocoon completely unfolds and refolds into an alternative conformation upon binding. The presence of the toxic enzyme inside the cocoon is essential for its subnanomolar binding affinity for the TcA subunit. The enzyme passes through a narrow negatively charged constriction site inside the cocoon, probably acting as an extruder that releases the unfolded protein with its C terminus first into the translocation channel.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Microscopia Crioeletrônica , Complexos Multiproteicos/ultraestrutura , Photorhabdus/ultraestrutura , Redobramento de Proteína , Desdobramento de Proteína , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , ADP Ribose Transferases/ultraestrutura , Toxinas Bacterianas/biossíntese , Citotoxinas/biossíntese , Citotoxinas/química , Citotoxinas/metabolismo , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Photorhabdus/química , Conformação Proteica , Transporte Proteico
6.
J Am Chem Soc ; 145(16): 8882-8895, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37053499

RESUMO

Solute-solvent interactions play a critical role in multiple fields, including biology, materials science, and (physical) organic, polymer, and supramolecular chemistry. Within the growing field of supramolecular polymer science, these interactions have been recognized as an important driving force for (entropically driven) intermolecular association, particularly in aqueous media. However, to date, solute-solvent effects remain poorly understood in the context of complex self-assembly energy landscapes and pathway complexity. Herein, we unravel the role of solute-solvent interactions in controlling chain conformation effects, allowing energy landscape modulation and pathway selection in aqueous supramolecular polymerization. To this end, we have designed a series of oligo(phenylene ethynylene) (OPE)-based bolaamphiphilic Pt(II) complexes OPE2-4 bearing solubilizing triethylene glycol (TEG) chains of equal length on both molecule ends, but a different size of the hydrophobic aromatic scaffold. Strikingly, detailed self-assembly studies in aqueous media disclose a different tendency of the TEG chains to fold back and enwrap the hydrophobic molecular component depending on both the size of the core and the volume fraction of the co-solvent (THF). The relatively small hydrophobic component of OPE2 can be readily shielded by the TEG chains, leading to only one aggregation pathway. In contrast, the decreased capability of the TEG chains to effectively shield larger hydrophobic cores (OPE3 and OPE4) enables different types of solvent quality-dependent conformations (extended, partly back-folded and back-folded), which in turn induce various controllable aggregation pathways with distinct morphologies and mechanisms. Our results shed light on previously underappreciated solvent-dependent chain conformation effects and their role in governing pathway complexity in aqueous media.

7.
Biol Chem ; 404(2-3): 107-119, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36117327

RESUMO

Peroxisomal integrity and function are highly dependent on its membrane and soluble (matrix) components. Matrix enzymes are imported post-translationally in a folded or even oligomeric state, via a still mysterious protein translocation mechanism. They are guided to peroxisomes via the Peroxisomal Targeting Signal (PTS) sequences which are recognized by specific cytosolic receptors, Pex5, Pex7 and Pex9. Subsequently, cargo-loaded receptors bind to the docking complex in an initial step, followed by channel formation, cargo-release, receptor-recycling and -quality control. The docking complexes of different species share Pex14 as their core component but differ in composition and oligomeric state of Pex14. Here we review and highlight the latest insights on the structure and function of the peroxisomal docking complex. We summarize differences between yeast and mammals and then we integrate this knowledge into our current understanding of the import machinery.


Assuntos
Proteínas de Membrana , Peroxissomos , Animais , Proteínas de Membrana/metabolismo , Peroxissomos/química , Transporte Proteico , Proteínas de Transporte/metabolismo , Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
8.
Biol Chem ; 404(2-3): 195-207, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36694962

RESUMO

Oxalyl-CoA synthetase from Saccharomyces cerevisiae is one of the most abundant peroxisomal proteins in yeast and hence has become a model to study peroxisomal translocation. It contains a C-terminal Peroxisome Targeting Signal 1, which however is partly dispensable, suggesting additional receptor bindings sites. To unravel any additional features that may contribute to its capacity to be recognized as peroxisomal target, we determined its assembly and overall architecture by an integrated structural biology approach, including X-ray crystallography, single particle cryo-electron microscopy and small angle X-ray scattering. Surprisingly, it assembles into mixture of concentration-dependent dimers, tetramers and hexamers by dimer self-association. Hexameric particles form an unprecedented asymmetric horseshoe-like arrangement, which considerably differs from symmetric hexameric assembly found in many other protein structures. A single mutation within the self-association interface is sufficient to abolish any higher-level oligomerization, resulting in a homogenous dimeric assembly. The small C-terminal domain of yeast Oxalyl-CoA synthetase is connected by a partly flexible hinge with the large N-terminal domain, which provides the sole basis for oligomeric assembly. Our data provide a basis to mechanistically study peroxisomal translocation of this target.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Microcorpos/química , Microcorpos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligases/análise , Ligases/metabolismo
9.
Biol Chem ; 404(4): 241-254, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36809224

RESUMO

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.


Assuntos
Canal de Potássio KCNQ1 , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Sítios de Ligação , Mutação , Membrana Celular/metabolismo
10.
Cell Commun Signal ; 21(1): 35, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782237

RESUMO

BACKGROUND: Extracellular vesicles (EVs), including small EVs (sEVs) such as exosomes, exhibit great potential for the diagnosis and treatment of brain disorders, representing a valuable tool for precision medicine. The latter demands high-quality human biospecimens, especially in complex disorders in which pathological and specimen heterogeneity, as well as diverse individual clinical profile, often complicate the development of precision therapeutic schemes and patient-tailored treatments. Thus, the collection and characterization of physiologically relevant sEVs are of the utmost importance. However, standard brain EV isolation approaches rely on tissue dissociation, which can contaminate EV fractions with intracellular vesicles. METHODS: Based on multiscale analytical platforms such as cryo-EM, label-free proteomics, advanced flow cytometry, and ExoView analyses, we compared and characterized the EV fraction isolated with this novel method with a classical digestion-based EV isolation procedure. Moreover, EV biogenesis was pharmacologically manipulated with either GW4869 or picrotoxin to assess the validity of the spontaneous-release method, while the injection of labelled-EVs into the mouse brain further supported the integrity of the isolated vesicles. RESULTS: We hereby present an efficient purification method that captures a sEV-enriched population spontaneously released by mouse and human brain tissue. In addition, we tested the significance of the release method under conditions where biogenesis/secretion of sEVs was pharmacologically manipulated, as well as under animals' exposure to chronic stress, a clinically relevant precipitant of brain pathologies, such as depression and Alzheimer's disease. Our findings show that the released method monitors the drug-evoked inhibition or enhancement of sEVs secretion while chronic stress induces the secretion of brain exosomes accompanied by memory loss and mood deficits suggesting a potential role of sEVs in the brain response to stress and related stress-driven brain pathology. CONCLUSIONS: Overall, the spontaneous release method of sEV yield may contribute to the characterization and biomarker profile of physiologically relevant brain-derived sEVs in brain function and pathology. Video Abstract.


Assuntos
Doença de Alzheimer , Exossomos , Vesículas Extracelulares , Humanos , Animais , Camundongos , Encéfalo , Biomarcadores
11.
Proc Natl Acad Sci U S A ; 117(52): 33216-33224, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33323485

RESUMO

Import of yeast peroxisomal matrix proteins is initiated by cytosolic receptors, which specifically recognize and bind the respective cargo proteins. At the peroxisomal membrane, the cargo-loaded receptor interacts with the docking protein Pex14p that is tightly associated with Pex17p. Previous data suggest that this interaction triggers the formation of an import pore for further translocation of the cargo. The mechanistic principles, however, are unclear, mainly because structures of higher-order assemblies are still lacking. Here, using an integrative approach, we provide the structural characterization of the major components of the peroxisomal docking complex Pex14p/Pex17p, in a native bilayer environment, and reveal its subunit organization. Our data show that three copies of Pex14p and a single copy of Pex17p assemble to form a 20-nm rod-like particle. The different subunits are arranged in a parallel manner, showing interactions along their complete sequences and providing receptor binding sites on both membrane sides. The long rod facing the cytosol is mainly formed by the predicted coiled-coil domains of Pex14p and Pex17p, possibly providing the necessary structural support for the formation of the import pore. Further implications of Pex14p/Pex17p for formation of the peroxisomal translocon are discussed.

12.
PLoS Pathog ; 16(8): e1008530, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810181

RESUMO

Anthrax toxin is the major virulence factor secreted by Bacillus anthracis, causing high mortality in humans and other mammals. It consists of a membrane translocase, known as protective antigen (PA), that catalyzes the unfolding of its cytotoxic substrates lethal factor (LF) and edema factor (EF), followed by translocation into the host cell. Substrate recruitment to the heptameric PA pre-pore and subsequent translocation, however, are not well understood. Here, we report three high-resolution cryo-EM structures of the fully-loaded anthrax lethal toxin in its heptameric pre-pore state, which differ in the position and conformation of LFs. The structures reveal that three LFs interact with the heptameric PA and upon binding change their conformation to form a continuous chain of head-to-tail interactions. As a result of the underlying symmetry mismatch, one LF binding site in PA remains unoccupied. Whereas one LF directly interacts with a part of PA called α-clamp, the others do not interact with this region, indicating an intermediate state between toxin assembly and translocation. Interestingly, the interaction of the N-terminal domain with the α-clamp correlates with a higher flexibility in the C-terminal domain of the protein. Based on our data, we propose a model for toxin assembly, in which the relative position of the N-terminal α-helices in the three LFs determines which factor is translocated first.


Assuntos
Antraz/microbiologia , Antígenos de Bactérias/química , Bacillus anthracis/fisiologia , Toxinas Bacterianas/química , Microscopia Crioeletrônica/métodos , Animais , Humanos , Modelos Moleculares , Conformação Proteica
13.
Chemistry ; 28(5): e202103406, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34825743

RESUMO

Metallo-supramolecular self-assembly has yielded a plethora of discrete nanosystems, many of which show competence in capturing guests and catalyzing chemical reactions. However, the potential of low-molecular bottom-up self-assemblies in the development of structured inorganic materials has rarely been methodically explored so far. Herein, we present a new type of metallo-supramolecular surfactant with the ability to stabilize non-aqueous emulsions for a significant period. The molecular design of the surfactant is based on a heteroleptic coordination cage (CGA-3; CGA=Cage-based Gemini Amphiphile), assembled from two pairs of organic building blocks, grouped around two Pd(II) cations. Shape-complementarity between the differently functionalized components generates discrete amphiphiles with a tailor-made polarity profile, able to stabilize non-aqueous emulsions, such as hexadecane-in-DMSO. These emulsions were used as a medium for the synthesis of spherical metal oxide microcapsules (titanium oxide, zirconium oxide, and niobium oxide) from soluble, water-sensitive alkoxide precursors by allowing a controlled dosage of water to the liquid-liquid phase boundary. Synthesized materials were analyzed by a combination of electron microscopic techniques. In situ liquid cell transmission electron microscopy (LC-TEM) was utilized for the first time to visualize the dynamics of the emulsion-templated formation of hollow inorganic titanium oxide and zirconium oxide microspheres.


Assuntos
Óxidos , Tensoativos , Cápsulas , Emulsões , Microscopia Eletrônica de Transmissão
14.
Nature ; 508(7494): 61-5, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24572368

RESUMO

Tripartite Tc toxin complexes of bacterial pathogens perforate the host membrane and translocate toxic enzymes into the host cell, including in humans. The underlying mechanism is complex but poorly understood. Here we report the first, to our knowledge, high-resolution structures of a TcA subunit in its prepore and pore state and of a complete 1.7 megadalton Tc complex. The structures reveal that, in addition to a translocation channel, TcA forms four receptor-binding sites and a neuraminidase-like region, which are important for its host specificity. pH-induced opening of the shell releases an entropic spring that drives the injection of the TcA channel into the membrane. Binding of TcB/TcC to TcA opens a gate formed by a six-bladed ß-propeller and results in a continuous protein translocation channel, whose architecture and properties suggest a novel mode of protein unfolding and translocation. Our results allow us to understand key steps of infections involving Tc toxins at the molecular level.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Photorhabdus/química , ADP Ribose Transferases/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Especificidade de Hospedeiro , Concentração de Íons de Hidrogênio , Modelos Moleculares , Neuraminidase/química , Porosidade , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico , Desdobramento de Proteína , Relação Estrutura-Atividade
15.
Nature ; 495(7442): 520-3, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23515159

RESUMO

Photorhabdus luminescens is an insect pathogenic bacterium that is symbiotic with entomopathogenic nematodes. On invasion of insect larvae, P. luminescens is released from the nematodes and kills the insect through the action of a variety of virulence factors including large tripartite ABC-type toxin complexes (Tcs). Tcs are typically composed of TcA, TcB and TcC proteins and are biologically active only when complete. Functioning as ADP-ribosyltransferases, TcC proteins were identified as the actual functional components that induce actin-clustering, defects in phagocytosis and cell death. However, little is known about the translocation of TcC into the cell by the TcA and TcB components. Here we show that TcA in P. luminescens (TcdA1) forms a transmembrane pore and report its structure in the prepore and pore state determined by cryoelectron microscopy. We find that the TcdA1 prepore assembles as a pentamer forming an α-helical, vuvuzela-shaped channel less than 1.5 nanometres in diameter surrounded by a large outer shell. Membrane insertion is triggered not only at low pH as expected, but also at high pH, explaining Tc action directly through the midgut of insects. Comparisons with structures of the TcdA1 pore inserted into a membrane and in complex with TcdB2 and TccC3 reveal large conformational changes during membrane insertion, suggesting a novel syringe-like mechanism of protein translocation. Our results demonstrate how ABC-type toxin complexes bridge a membrane to insert their lethal components into the cytoplasm of the host cell. We believe that the proposed mechanism is characteristic of the whole ABC-type toxin family. This explanation of toxin translocation is a step towards understanding the host-pathogen interaction and the complex life cycle of P. luminescens and other pathogens, including human pathogenic bacteria, and serves as a strong foundation for the development of biopesticides.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Photorhabdus/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , ADP Ribose Transferases/ultraestrutura , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Toxinas Bacterianas/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Citoplasma/metabolismo , Interações Hospedeiro-Patógeno , Insetos/citologia , Insetos/metabolismo , Insetos/microbiologia , Modelos Biológicos , Modelos Moleculares , Photorhabdus/patogenicidade , Photorhabdus/ultraestrutura , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/ultraestrutura , Conformação Proteica , Transporte Proteico
16.
J Am Chem Soc ; 140(50): 17384-17388, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30516378

RESUMO

Self-assembled, porous coordination cages with a functional interior find application in controlled guest inclusion/release, drug delivery, separation processes, and catalysis. However, only few studies exist that describe their utilization for the development of self-assembled materials based on their 3-dimensional shape and external functionalization. Here, dodecyl chain-containing, acridone-based ligands (LA) and shape-complementary phenanthrene-derived ligands (LB) are shown to self-assemble to heteroleptic coordination cages cis-[Pd2(LA)2(LB)2]4+ acting as a gemini amphiphile (CGA-1; Cage-based Gemini Amphiphile-1). Owing to their anisotropic decoration with short polar and long nonpolar side chains, the cationic cages were found to assemble into vesicles with diameters larger than 100 nm in suitable polar solvents, visualized by cryo-TEM and Liquid-Cell Transmission Electron Microscopy (LC-TEM). LC-TEM reveals that these vesicles aggregate into chains and necklaces via long-range interactions. In addition, the cages show a rarely described ability to stabilize oil-in-oil emulsions.

17.
Nat Chem Biol ; 11(11): 862-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26436840

RESUMO

Excessive aggregation of proteins has a major impact on cell fate and is a hallmark of amyloid diseases in humans. To resolve insoluble deposits and to maintain protein homeostasis, all cells use dedicated protein disaggregation, protein folding and protein degradation factors. Despite intense recent research, the underlying mechanisms controlling this key metabolic event are not well understood. Here, we analyzed how a single factor, the highly conserved serine protease HTRA1, degrades amyloid fibrils in an ATP-independent manner. This PDZ protease solubilizes protein fibrils and disintegrates the fibrillar core structure, allowing productive interaction of aggregated polypeptides with the active site for rapid degradation. The aggregate burden in a cellular model of cytoplasmic tau aggregation is thus reduced. Mechanistic aspects of ATP-independent proteolysis and its implications in amyloid diseases are discussed.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Fragmentos de Peptídeos/química , Proteínas Recombinantes de Fusão/química , Serina Endopeptidases/química , Proteínas tau/química , Amiloide/genética , Peptídeos beta-Amiloides/genética , Transporte Biológico , Expressão Gênica , Células HEK293 , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Domínios PDZ , Fragmentos de Peptídeos/genética , Agregados Proteicos , Conformação Proteica , Proteólise , Proteínas Recombinantes de Fusão/genética , Serina Endopeptidases/genética , Proteínas tau/genética
18.
Proc Natl Acad Sci U S A ; 109(6): 1991-6, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308417

RESUMO

Membrane fusion within the eukaryotic endomembrane system depends on the initial recognition of Rab GTPase on transport vesicles by multisubunit tethering complexes and subsequent coupling to SNARE-mediated fusion. The conserved vacuolar/lysosomal homotypic fusion and vacuole protein sorting (HOPS) tethering complex combines both activities. Here we present the overall structure of the fusion-active HOPS complex. Our data reveal a flexible ≈30-nm elongated seahorse-like structure, which can adopt contracted and elongated shapes. Surprisingly, both ends of the HOPS complex contain a Rab-binding subunit: Vps41 and Vps39. The large head contains in addition to Vps41 the SNARE-interacting Vps33, whereas Vps39 is found in the bulky tip of its tail. Vps11 and Vps18 connect head and tail. Our data suggest that HOPS bridges Ypt7-positive membranes and chaperones SNAREs at fusion sites.


Assuntos
Fusão de Membrana , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Vacúolos/metabolismo , Sítios de Ligação , Proteínas de Fluorescência Verde/metabolismo , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática , Proteínas rab de Ligação ao GTP/metabolismo
19.
Small ; 10(1): 73-7, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23861344

RESUMO

A convenient PCR cloning strategy allows one to prepare hundreds of picomoles of circular single-stranded DNA molecules, which are suitable as scaffolds for the assembly of DNA origami structures. The method is based on a combination of site-directed mutagenesis and site- and ligation-independent cloning protocols, with simultaneous insertion of a nicking endonuclease restriction site on a double-stranded plasmid of desired length and sequence.


Assuntos
DNA/química , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase
20.
Science ; 384(6694): eadf5489, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662826

RESUMO

Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.


Assuntos
Axonema , Centríolos , Cílios , Transtornos da Motilidade Ciliar , Tubulina (Proteína) , Animais , Humanos , Camundongos , Axonema/metabolismo , Centríolos/metabolismo , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Masculino , Feminino , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA