Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(32): e2310079121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074271

RESUMO

California agriculture will undergo significant transformations over the next few decades in response to climate extremes, environmental regulation and policy encouraging environmental justice, and economic pressures that have long driven agricultural changes. With several local climates suited to a variety of crops, periodically abundant nearby precipitation, and public investments that facilitated abundant low-priced irrigation water, California hosts one of the most diverse and productive agroecosystems in the world. California farms supply nearly half of the high-nutrient fruit, tree nut, and vegetable production in the United States. Climate change impacts on productivity and profitability of California agriculture are increasing and forebode problems for standard agricultural practices, especially water use norms. We highlight many challenges California agriculture confronts under climate change through the direct and indirect impacts on the biophysical conditions and ecosystem services that drive adaptations in farm practices and water accessibility and availability. In the face of clear conflicts among competing interests, we consider ongoing and potential sustainable and equitable solutions, with particular attention to how technology and policy can facilitate progress.


Assuntos
Agricultura , Mudança Climática , California , Agricultura/métodos , Ecossistema , Abastecimento de Água , Produtos Agrícolas/crescimento & desenvolvimento , Irrigação Agrícola , Água
2.
Glob Chang Biol ; 30(5): e17298, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712640

RESUMO

Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America. Species-diverse and functionally rich rotations more than compensated yield losses from anomalous warm conditions, long and warm dry spells, as well as from anomalous wet (for small grains) or dry (for maize) conditions. Adding a single functional group or crop species to monocultures counteracted yield losses from substantial changes in climatic conditions. The benefits of a further increase in CRD are comparable with those of improved climatic conditions. For instance, the maize yield benefits of adding three crop species to monocultures under detrimental climatic conditions exceeded the average yield of monocultures by up to 553 kg/ha under non-detrimental climatic conditions. Increased crop functional richness improved yields under high temperature, irrespective of precipitation. Conversely, yield benefits peaked at between two and four crop species in the rotation, depending on climatic conditions and crop, and declined at higher species diversity. Thus, crop species diversity could be adjusted to maximize yield benefits. Diversifying rotations with functionally distinct crops is an adaptation of cropping systems to global warming and changes in precipitation.


Assuntos
Mudança Climática , Produtos Agrícolas , Zea mays , Produtos Agrícolas/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , América do Norte , Europa (Continente) , Grão Comestível/crescimento & desenvolvimento , Agricultura/métodos , Biodiversidade , Produção Agrícola/métodos
3.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31175190

RESUMO

Agricultural management practices affect bulk soil microbial communities and the functions they carry out, but it remains unclear how these effects extend to the rhizosphere in different agroecosystem contexts. Given close linkages between rhizosphere processes and plant nutrition and productivity, understanding how management practices impact this critical zone is of great importance to optimize plant-soil interactions for agricultural sustainability. A comparison of six paired conventional-organic processing tomato farms was conducted to investigate relationships between management, soil physicochemical parameters, and rhizosphere microbial community composition and functions. Organically managed fields were higher in soil total N and NO3-N, total and labile C, plant Ca, S, and Cu, and other essential nutrients, while soil pH was higher in conventionally managed fields. Differential abundance, indicator species, and random forest analyses of rhizosphere communities revealed compositional differences between organic and conventional systems and identified management-specific microbial taxa. Phylogeny-based trait prediction showed that these differences translated into more abundant pathogenesis-related gene functions in conventional systems. Structural equation modeling revealed a greater effect of soil biological communities than physicochemical parameters on plant outcomes. These results highlight the importance of rhizosphere-specific studies, as plant selection likely interacts with management in regulating microbial communities and functions that impact agricultural productivity.IMPORTANCE Agriculture relies, in part, on close linkages between plants and the microorganisms that live in association with plant roots. These rhizosphere bacteria and fungi are distinct from microbial communities found in the rest of the soil and are even more important to plant nutrient uptake and health. Evidence from field studies shows that agricultural management practices such as fertilization and tillage shape microbial communities in bulk soil, but little is known about how these practices affect the rhizosphere. We investigated how agricultural management affects plant-soil-microbe interactions by comparing soil physical and chemical properties, plant nutrients, and rhizosphere microbial communities from paired fields under organic and conventional management. Our results show that human management effects extend even to microorganisms living in close association with plant roots and highlight the importance of these bacteria and fungi to crop nutrition and productivity.


Assuntos
Microbiologia do Solo , Solanum lycopersicum/crescimento & desenvolvimento , Agricultura , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Solanum lycopersicum/microbiologia , Microbiota , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Solo/química
4.
Glob Chang Biol ; 25(11): 3753-3766, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31301684

RESUMO

Increasing soil organic carbon (SOC) via organic inputs is a key strategy for increasing long-term soil C storage and improving the climate change mitigation and adaptation potential of agricultural systems. A long-term trial in California's Mediterranean climate revealed impacts of management on SOC in maize-tomato and wheat-fallow cropping systems. SOC was measured at the initiation of the experiment and at year 19, at five depth increments down to 2 m, taking into account changes in bulk density. Across the entire 2 m profile, SOC in the wheat-fallow systems did not change with the addition of N fertilizer, winter cover crops (WCC), or irrigation alone and decreased by 5.6% with no inputs. There was some evidence of soil C gains at depth with both N fertilizer and irrigation, though high variation precluded detection of significant changes. In maize-tomato rotations, SOC increased by 12.6% (21.8 Mg C/ha) with both WCC and composted poultry manure inputs, across the 2 m profile. The addition of WCC to a conventionally managed system increased SOC stocks by 3.5% (1.44 Mg C/ha) in the 0-30 cm layer, but decreased by 10.8% (14.86 Mg C/ha) in the 30-200 cm layer, resulting in overall losses of 13.4 Mg C/ha. If we only measured soil C in the top 30 cm, we would have assumed an increase in total soil C increased with WCC alone, whereas in reality significant losses in SOC occurred when considering the 2 m soil profile. Ignoring the subsoil carbon dynamics in deeper layers of soil fails to recognize potential opportunities for soil C sequestration, and may lead to false conclusions about the impact of management practices on C sequestration.


Assuntos
Sequestro de Carbono , Compostagem , Agricultura , California , Carbono , Nitrogênio , Solo
5.
Environ Manage ; 64(2): 201-212, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31214771

RESUMO

Pasture degradation hinders livestock production and ecosystem services that support rural smallholder communities throughout Latin America. Silvopastoral systems, with improved pasture cultivars (especially Brachiaria spp.) and multipurpose trees, offer a promising strategy to restore soils and improve livelihoods in the region. However, studies evaluating the impact of such systems on pasture productivity and soil health under realistic smallholder constraints are lacking. We evaluated the impact of improved pasture grass and tree establishment on a suite of soil health indicators in actively grazed, low-input, farmer-managed silvopastoral systems. In August 2013, paired pasture treatments (improved grass with trees vs. traditional pastures) were established on nine farms with similar land-use histories near Matagalpa, Nicaragua. On each farm, one treatment was left as traditional pasture with naturalized grass (Hyparrhenia rufa), while the adjacent treatment was sown with the improved grass (Brachiaria brizantha cv. Marandu) and planted with tree saplings without fertilizer. In August 2015, we measured standing biomass and a suite of chemical, biological, and physical soil health variables. Improved silvopastoral systems with B. brizantha produced more standing grass biomass and supported higher levels of earthworm populations and permanganate oxidizable carbon (POXC) compared to the traditional control. Correlations suggest that earthworms and POXC were associated with incipient improvements to soil aggregate stability and water holding capacity. We report measurable improvements to soil health just two years following the establishment of improved pasture systems under common smallholder management practices and suggest that these systems, even with minimal fertility inputs, have the potential to enhance regional sustainability.


Assuntos
Ecossistema , Solo , Agricultura , Animais , Fertilizantes , Gado , Nicarágua
7.
BMC Genet ; 15: 23, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24524734

RESUMO

BACKGROUND: There was ancient human selection on the wild progenitor of modern maize, Balsas teosinte, for decreased shoot branching (tillering), in order to allow more nutrients to be diverted to grain. Mechanistically, the decline in shoot tillering has been associated with selection for increased expression of the major domestication gene Teosinte Branched 1 (Tb1) in shoot primordia. Therefore, TB1 has been defined as a repressor of shoot branching. It is known that plants respond to changes in shoot size by compensatory changes in root growth and architecture. However, it has not been reported whether altered TB1 expression affects any plant traits below ground. Previously, changes in dosage of a well-studied mutant allele of Tb1 in modern maize, called tb1-ref, from one to two copies, was shown to increase tillering. As a result, plants with two copies of the tb1-ref allele have a larger shoot biomass than heterozygotes. Here we used aeroponics to phenotype the effects of tb1-ref copy number on maize roots at macro-, meso- and micro scales of development. RESULTS: An increase in the tb1-ref copy number from one to two copies resulted in: (1) an increase in crown root number due to the cumulative initiation of crown roots from successive tillers; (2) higher density of first and second order lateral roots; and (3) reduced average lateral root length. The resulting increase in root system biomass in homozygous tb1-ref mutants balanced the increase in shoot biomass caused by enhanced tillering. These changes caused homozygous tb1-ref mutants of modern maize to more closely resemble its ancestor Balsas teosinte below ground. CONCLUSION: We conclude that a decrease in TB1 function in maize results in a larger root system, due to an increase in the number of crown roots and lateral roots. Given that decreased TB1 expression results in a more highly branched and larger shoot, the impact of TB1 below ground may be direct or indirect. We discuss the potential implications of these findings for whole plant coordination of biomass accumulation and maize domestication.


Assuntos
Evolução Molecular , Dosagem de Genes , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/genética , Alelos , Genes de Plantas , Raízes de Plantas/genética , Seleção Genética , Zea mays/crescimento & desenvolvimento
8.
Rice (N Y) ; 17(1): 25, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592643

RESUMO

BACKGROUND: Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with OsTZF5, encoding a CCCH-tandem zinc finger protein, under the control of the rice LIP9 stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T6 generation. RESULTS: Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of - 25 to - 75 kPa at a soil depth of 30 cm which reduced biomass by 30-55% and grain yield by 1-92%, presenting a range of drought severities. OsTZF5 transgenic lines showed high yield advantage under drought over IR64 in early generations, which was related to shorter time to flowering, lower shoot biomass and higher harvest index. However, the increases in values for yield and related traits in the transgenics became smaller over successive generations despite continued detection of drought-induced transgene expression as conferred by the LIP9 promoter. The decreased advantage of the transgenics over generations tended to coincide with increased levels of homozygosity. Background cleaning of the transgenic lines as well as introgression of the transgene into an IR64 line containing major-effect drought yield QTLs, which were evaluated starting at the BC3F1 and BC2F3 generation, respectively, did not result in consistently increased yield under drought as compared to the respective checks. CONCLUSIONS: Although we cannot conclusively explain the genetic factors behind the loss of yield advantage of the transgenics under drought across generations, our results help in distinguishing among potential drought tolerance mechanisms related to effectiveness of the transgenics, since early flowering and harvest index most closely reflected the levels of yield advantage in the transgenics across generations while reduced biomass did not.

9.
J Exp Bot ; 64(1): 109-17, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23202133

RESUMO

Numerous transgenes have been reported to increase rice drought resistance, mostly in small-scale experiments under vegetative-stage drought stress, but few studies have included grain yield or field evaluations. Different definitions of drought resistance are currently in use for field-based and laboratory evaluations of transgenics, the former emphasizing plant responses that may not be linked to yield under drought. Although those fundamental studies use efficient protocols to uncover and validate gene functions, screening conditions differ greatly from field drought environments where the onset of drought stress symptoms is slow (2-3 weeks). Simplified screening methods, including severely stressed survival studies, are therefore not likely to identify transgenic events with better yield performance under drought in the target environment. As biosafety regulations are becoming established to allow field trials in some rice-producing countries, there is a need to develop relevant screening procedures that scale from preliminary event selection to greenhouse and field trials. Multilocation testing in a range of drought environments may reveal that different transgenes are necessary for different types of drought-prone field conditions. We describe here a pipeline to improve the selection efficiency and reproducibility of results across drought treatments and test the potential of transgenic rice for the development of drought-resistant material for agricultural purposes.


Assuntos
Agricultura , Secas , Oryza/genética , Oryza/fisiologia , Meio Ambiente , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Transgenes/genética
10.
Environ Entomol ; 51(4): 790-797, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35834263

RESUMO

Habitat diversification has been shown to positively influence a variety of ecosystem services to agriculture, including biological control of arthropod pests. The impact of increased biodiversity tends to be species specific though, and practices therefore need to be developed on a case-by-case basis for each cropping system. In perennial systems, numerous studies have demonstrated that cover crops can have positive impacts on soil quality and other ecosystem services, such as pollination and pest management. However, few studies have focused on the use of cover crops to enhance pest control in almond orchards, especially winter cover crops. The primary pest of almonds in North America is navel orangeworm, Amyelois transitella Walker, which overwinter as larva or pupa on remnant nuts, many of which remain on the orchard soil surface. In the spring, first flight adults subsequently use these remnant nuts as reproductive substrate. An experiment was conducted to evaluate the influence of two distinct winter cover crop mixtures on overwintering mortality and spring egg deposition of A. transitella. Remnant nuts placed into cover crop plots produced fewer adult A. transitella in the spring, suggesting increased overwintering mortality. Additionally, spring egg deposition was reduced on remnant nuts in the cover crops, possibly due to the ground covers interfering with host location and access. In this way, winter cover crops appear to contribute to the reduction of A. transitella populations in the orchard by altering abiotic and physical conditions, although studies to document specific mechanisms are still needed.


Assuntos
Mariposas , Prunus dulcis , Animais , Ecossistema , Larva , Solo
11.
J Environ Qual ; 51(5): 941-951, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35780467

RESUMO

Inefficient nitrogen (N) fertilization and irrigation have led to unhealthy nitrate levels in groundwater bodies of agricultural areas in California. Simultaneously, high commodity prices and drought have encouraged perennial crop growers to turnover less-productive orchards, providing opportunities to recycle tree biomass in situ and to use high-carbon (C) residues to conserve soil and water resources. Although climate change adaptation and mitigation benefits of high-C soil amendments have been shown, uncertainties remain regarding the benefits and trade-offs of this practice for N cycling and retention. We used established almond [Prunus dulcis (Mill.) D. A. Webb] orchard trials on Hanford fine sandy loam with short-term and long-term biomass recycling legacies to better understand the changes in N dynamics and retention capacity associated with this practice. In a soil column experiment, labeled N fertilizer was added and traced into various N pools, including microbial biomass and inorganic fractions in soil and leachate. Shifts in microbial communities were characterized using the abundance of key N cycling functional genes regulating nitrification and denitrification processes. Our findings showed that, in the short term, biomass recycling led to N immobilization within the orchard biomass incorporation depth zone (0-15 cm) without impacts on N leaching potential. However, this practice drastically reduced nitrate leaching potential by 52%, 10 yr after biomass incorporation without an increase in N immobilization. Although the timing of these potential benefits as a function of microbial population and C and N biogeochemical cycles still needs to be clarified, our results highlight the potential of this practice to meaningfully mitigate nitrate discharges into groundwater while conserving soil resources.


Assuntos
Nitratos , Prunus dulcis , Carbono , Fertilizantes , Nitratos/análise , Nitrogênio/análise , Compostos Orgânicos , Solo/química
12.
Plant Cell Environ ; 34(12): 2122-37, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21848860

RESUMO

There is interest in discovering root traits associated with acclimation to nutrient stress. Large root systems, such as in adult maize, have proven difficult to be phenotyped comprehensively and over time, causing target traits to be missed. These challenges were overcome here using aeroponics, a system where roots grow in the air misted with a nutrient solution. Applying an agriculturally relevant degree of low nitrogen (LN) stress, 30-day-old plants responded by increasing lengths of individual crown roots (CRs) by 63%, compensated by a 40% decline in CR number. LN increased the CR elongation rate rather than lengthening the duration of CR growth. Only younger CR were significantly responsive to LN stress, a novel finding. LN shifted the root system architectural balance, increasing the lateral root (LR)-to-CR ratio, adding ∼70 m to LR length. LN caused a dramatic increase in second-order LR density, not previously reported in adult maize. Despite the near-uniform aeroponics environment, LN induced increased variation in the relative lengths of opposing LR pairs. Large-scale analysis of root hairs (RHs) showed that LN decreased RH length and density. Time-course experiments suggested the RH responses may be indirect consequences of decreased biomass/demand under LN. These results identify novel root traits for genetic dissection.


Assuntos
Nitrogênio/metabolismo , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/genética , Biomassa , Raízes de Plantas/fisiologia , Fatores de Tempo , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia
13.
PLoS One ; 15(5): e0231840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379773

RESUMO

Production systems that feature temporal and spatial integration of crop and livestock enterprises, also known as integrated crop-livestock systems (ICLS), have the potential to intensify production on cultivated lands and foster resilience to the effects of climate change without proportional increases in environmental impacts. Yet, crop production outcomes following livestock grazing across environments and management scenarios remain uncertain and a potential barrier to adoption, as producers worry about the effects of livestock activity on the agronomic quality of their land. To determine likely production outcomes across ICLS and to identify the most important moderating variables governing those outcomes, we performed a meta-analysis of 66 studies comparing crop yields in ICLS to yields in unintegrated controls across 3 continents, 12 crops, and 4 livestock species. We found that annual cash crops in ICLS averaged similar yields (-7% to +2%) to crops in comparable unintegrated systems. The exception was dual-purpose crops (crops managed simultaneously for grazing and grain production), which yielded 20% less on average than single-purpose crops in the studies examined. When dual-purpose cropping systems were excluded from the analysis, crops in ICLS yielded more than in unintegrated systems in loamy soils and achieved equal yields in most other settings, suggesting that areas of intermediate soil texture may represent a "sweet-spot" for ICLS implementation. This meta-analysis represents the first quantitative synthesis of the crop production outcomes of ICLS and demonstrates the need for further investigation into the conditions and management scenarios under which ICLS can be successfully implemented.


Assuntos
Agricultura/métodos , Produção Agrícola/economia , Produtos Agrícolas/economia , Gado , Agricultura/economia , Animais , Bovinos , Mudança Climática , Secas , Meio Ambiente , Estações do Ano , Ovinos , Solo
14.
AoB Plants ; 12(4): plaa026, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32665828

RESUMO

Plant-microbe interactions in the rhizosphere influence rates of organic matter mineralization and nutrient cycling that are critical to sustainable agricultural productivity. Agricultural intensification, particularly the introduction of synthetic fertilizer in the USA, altered the abundance and dominant forms of nitrogen (N), a critical plant nutrient, potentially imposing selection pressure on plant traits and plant-microbe interactions regulating N cycling and acquisition. We hypothesized that maize adaptation to synthetic N fertilization altered root functional traits and rhizosphere microbial nutrient cycling, reducing maize ability to acquire N from organic sources. Six maize genotypes released pre-fertilizer (1936, 1939, 1942) or post-fertilizer (1984, 1994, 2015) were grown in rhizoboxes containing patches of 15N-labelled clover/vetch residue. Multivariate approaches did not identify architectural traits that strongly and consistently predicted rhizosphere processes, though metrics of root morphological plasticity were linked to carbon- and N-cycling enzyme activities. Root traits, potential activities of extracellular enzymes (BG, LAP, NAG, urease), abundances of N-cycling genes (amoA, narG, nirK, nirS, nosZ) and uptake of organic N did not differ between eras of release despite substantial variation among genotypes and replicates. Thus, agricultural intensification does not appear to have impaired N cycling and acquisition from organic sources by modern maize and its rhizobiome. Improved mechanistic understanding of rhizosphere processes and their response to selective pressures will contribute greatly to rhizosphere engineering for sustainable agriculture.

15.
Nat Plants ; 6(5): 483-491, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32415295

RESUMO

Reduced insect pest populations found on long-term organic farms have mostly been attributed to increased biodiversity and abundance of beneficial predators, as well as to changes in plant nutrient content. However, the role of plant resistance has largely been ignored. Here, we determine whether host plant resistance mediates decreased pest populations in organic systems and identify potential underpinning mechanisms. We demonstrate that fewer numbers of leafhoppers (Circulifer tenellus) settle on tomatoes (Solanum lycopersicum) grown using organic management as compared to conventional. We present multiple lines of evidence, including rhizosphere soil microbiome sequencing, chemical analysis and transgenic approaches, to demonstrate that changes in leafhopper settling between organically and conventionally grown tomatoes are dependent on salicylic acid accumulation in plants and mediated by rhizosphere microbial communities. These results suggest that organically managed soils and microbial communities may play an unappreciated role in reducing plant attractiveness to pests by increasing plant resistance.


Assuntos
Agricultura Orgânica , Controle Biológico de Vetores , Defesa das Plantas contra Herbivoria , Animais , Hemípteros , Solanum lycopersicum/fisiologia , Agricultura Orgânica/métodos , Rizosfera , Microbiologia do Solo
16.
PLoS One ; 15(3): e0229588, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218562

RESUMO

There is an urgent need to develop climate smart agroecosystems capable of mitigating climate change and adapting to its effects. In California, high commodity prices and increased frequency of drought have encouraged orchard turnover, providing an opportunity to recycle tree biomass in situ prior to replanting an orchard. Whole orchard recycling (WOR) has potential as a carbon (C) negative cultural practice to build soil C storage, soil health, and orchard productivity. We tested the potential of this practice for long term C sequestration and hypothesized that associated co-benefits to soil health will enhance sustainability and resiliency of almond orchards to water-deficit conditions. We measured soil health metrics and productivity of an almond orchard following grinding and incorporation of woody biomass vs. burning of old orchard biomass 9 years after implementation. We also conducted a deficit irrigation trial with control and deficit irrigation (-20%) treatments to quantify shifts in tree water status and resilience. Biomass recycling led to higher yields and substantial improvement in soil functioning, including nutrient content, aggregation, porosity, and water retention. This practice also sequestered significantly higher levels of C in the topsoil (+5 t ha-1) compared to burning. We measured a 20% increase in irrigation water use efficiency and improved soil and tree water status under stress, suggesting that in situ biomass recycling can be considered as a climate smart practice in California irrigated almond systems.


Assuntos
Agricultura/métodos , Mudança Climática , Prunus dulcis/crescimento & desenvolvimento , Aclimatação , Irrigação Agrícola , Biomassa , California , Sequestro de Carbono , Secas , Prunus dulcis/fisiologia , Reciclagem , Solo/química , Microbiologia do Solo , Árvores , Água
17.
Front Plant Sci ; 11: 360, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292412

RESUMO

Root exploitation of soil heterogeneity and microbially mediated rhizosphere nutrient transformations play critical roles in plant resource uptake. However, how these processes change under water-saving irrigation technologies remains unclear, especially for organic systems where crops rely on soil ecological processes for plant nutrition and productivity. We conducted a field experiment and examined how water-saving subsurface drip irrigation (SDI) and concentrated organic fertilizer application altered root traits and rhizosphere processes compared to traditional furrow irrigation (FI) in an organic tomato system. We measured root distribution and morphology, the activities of C-, N-, and P-cycling enzymes in the rhizosphere, the abundance of rhizosphere microbial N-cycling genes, and root mycorrhizal colonization rate under two irrigation strategies. Tomato plants produced shorter and finer root systems with higher densities of roots around the drip line, lower activities of soil C-degrading enzymes, and shifts in the abundance of microbial N-cycling genes and mycorrhizal colonization rates in the rhizosphere of SDI plants compared to FI. SDI led to 66.4% higher irrigation water productivity than FI, but it also led to excessive vegetative growth and 28.3% lower tomato yield than FI. Our results suggest that roots and root-microbe interactions have a high potential for coordinated adaptation to water and nutrient spatial patterns to facilitate resource uptake under SDI. However, mismatches between plant needs and resource availability remain, highlighting the importance of assessing temporal dynamics of root-soil-microbe interactions to maximize their resource-mining potential for innovative irrigation systems.

18.
Microbiome ; 7(1): 146, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699148

RESUMO

BACKGROUND: Rhizosphere microbial communities are key regulators of plant performance, yet few studies have assessed the impact of different management approaches on the rhizosphere microbiomes of major crops. Rhizosphere microbial communities are shaped by interactions between agricultural management and host selection processes, but studies often consider these factors individually rather than in combination. We tested the impacts of management (M) and rhizosphere effects (R) on microbial community structure and co-occurrence networks of maize roots collected from long-term conventionally and organically managed maize-tomato agroecosystems. We also explored the interaction between these factors (M × R) and how it impacts rhizosphere microbial diversity and composition, differential abundance, indicator taxa, co-occurrence network structure, and microbial nitrogen-cycling processes. RESULTS: Host selection processes moderate the influence of agricultural management on rhizosphere microbial communities, although bacteria and fungi respond differently to plant selection and agricultural management. We found that plants recruit management-system-specific taxa and shift N-cycling pathways in the rhizosphere, distinguishing this soil compartment from bulk soil. Rhizosphere microbiomes from conventional and organic systems were more similar in diversity and network structure than communities from their respective bulk soils, and community composition was affected by both M and R effects. In contrast, fungal community composition was affected only by management, and network structure only by plant selection. Quantification of six nitrogen-cycling genes (nifH, amoA [bacterial and archaeal], nirK, nrfA, and nosZ) revealed that only nosZ abundance was affected by management and was higher in the organic system. CONCLUSIONS: Plant selection interacts with conventional and organic management practices to shape rhizosphere microbial community composition, co-occurrence patterns, and at least one nitrogen-cycling process. Reframing research priorities to better understand adaptive plant-microbe feedbacks and include roots as a significant moderating influence of management outcomes could help guide plant-oriented strategies to improve productivity and agroecosystem sustainability.


Assuntos
Agricultura , Microbiota , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , California , Solanum lycopersicum/microbiologia , Ciclo do Nitrogênio , Zea mays/microbiologia
19.
Sci Rep ; 9(1): 12283, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439927

RESUMO

Adaptive management practices that maximize yields while improving yield resilience are required in the face of resource variability and climate change. Ecological intensification such as organic farming and cover cropping are lauded in some studies for fostering yield resilience, but subject to criticism in others for their low productivity. We implemented a quantitative framework to assess yield resilience, emphasizing four aspects of yield dynamics: yield, yield stability, yield resistance (i.e., the ability of systems to avoid crop failure under stressful growing conditions), and maximum yield potential. We compared the resilience of maize-tomato rotation systems after 24 years of irrigated organic, cover cropped, and conventional management in a Mediterranean climate, and identified crop-specific resilience responses of tomato and maize to three management systems. Organic management maintained tomato yields comparable to those under conventional management, while increasing yield stability and resistance. However, organic and cover cropped system resulted in 36.1% and 35.8% lower maize yields and reduced yield stability and resistance than the conventional system. Our analyses suggest that investments in ecological intensification approaches could potentially contribute to long-term yield resilience, however, these approaches need to be tailored for individual crops and systems to maximize their benefits, rather than employing one-size-fits-all approaches.


Assuntos
Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura Orgânica , Solanum lycopersicum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Região do Mediterrâneo
20.
Sci Rep ; 9(1): 15611, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666614

RESUMO

Maize domestication and breeding have resulted in drastic and well documented changes in aboveground traits, but belowground effects on root system functioning and rhizosphere microbial communities remain poorly understood, despite their critical importance for nutrient and water acquisition. We investigated the rhizosphere microbial community composition and structure of ten Zea mays accessions along an evolutionary transect (two teosinte, three inbred maize lines, and five modern maize hybrids) grown in nutrient depleted soil from a low input agricultural system. Microbial community analysis revealed significant differences in community composition between soil compartments (proximal vs. distal rhizosphere) and between plant genetic groups (teosinte, inbred, and modern hybrid). Only a small portion of the microbial community was differentially selected across plant genetic groups: 3.7% of prokaryotic community members and 4.9% of fungal community members were significantly associated with a specific plant genetic group. Indicator species analysis showed the greatest differentiation between modern hybrids and the other two plant genetic groups. Co-occurrence network analysis revealed that microbial co-occurrence patterns of the inbred maize lines' rhizosphere were significantly more similar to those of the teosintes than to the modern hybrids. Our results suggest that advances in hybrid development significantly impacted rhizosphere microbial communities and network assembly.


Assuntos
Cruzamento , Domesticação , Microbiota , Nutrientes/análise , Rizosfera , Solo/química , Zea mays/microbiologia , Agricultura , Microbiologia do Solo , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA