Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(35): 16293-16303, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39173120

RESUMO

Coordination chemistry trends across the periodic table are often difficult to probe experimentally due to limitations in finding a versatile but consistent chelating platform that can accommodate various elements without changing its coordination mode. Herein, we present new metal/ligand systems covering a wide range of ionic radii, charges, and elements. Five different ligands derived from the Keggin structure (HBW11O398-, PW11O397-, SiW11O398-, GeW11O398-, and GaW11O399-) were successfully crystallized with six different cations (Na+, Sr2+, Ba2+, La3+, Ce4+, and Th4+) and characterized by single-crystal X-ray diffraction. Twenty-five new compounds were obtained by using Cs+ as the counterion, yielding a consistent base formula of Csx[M(XW11O39)2]·nH2O. Despite having a similar first-coordination sphere geometry (i.e., 8-coordinated), the nature of the central cation was found to impact the long-range geometry of the complexes. This unique crystallographic data set shows that, despite the traditional consensus, the local geometry of the cation (i.e., metal-oxygen bond distance) is not enough to depict the full impact of the complexed metal ion. The bending and twisting of the complexes, as well as ligand-ligand distances, were all impacted by the nature of the central cation. We also observed that counterions play a critical role by stabilizing the geometry of the M(XW11)2 complex and directing complex-complex interactions in the lattice. We also define certain structural limits for this type of complex, with the large Ba2+ ion seemingly approaching those limits. This study thus lays the foundation for capturing the coordination chemistry of other rarer elements across the periodic table such as Ra2+, Ac3+, Bk4+, Cf3+, etc.

2.
Inorg Chem ; 62(16): 6242-6254, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36580490

RESUMO

Deciphering the solution chemistry and speciation of actinides is inherently difficult due to radioactivity, rarity, and cost constraints, especially for transplutonium elements. In this context, the development of new chelating platforms for actinides and associated spectroscopic techniques is particularly important. In this study, we investigate a relatively overlooked class of chelators for actinide binding, namely, polyoxometalates (POMs). We provide the first NMR measurements on americium-POM and curium-POM complexes, using one-dimensional (1D) 31P NMR, variable-temperature NMR, and spin-lattice relaxation time (T1) experiments. The proposed POM-NMR approach allows for the study of trivalent f-elements even when only microgram amounts are available and in phosphate-containing solutions where f-elements are typically insoluble. The solution-state speciation of trivalent americium, curium, plus multiple lanthanide ions (La3+, Nd3+, Sm3+, Eu3+, Yb3+, and Lu3+), in the presence of the model POM ligand PW11O397- was elucidated and revealed the concurrent formation of two stable complexes, [MIII(PW11O39)(H2O)x]4- and [MIII(PW11O39)2]11-. Interconversion reaction constants, reaction enthalpies, and reaction entropies were derived from the NMR data. The NMR results also provide experimental evidence of the weakly paramagnetic nature of the Am3+ and Cm3+ ions in solution. Furthermore, the study reveals a previously unnoticed periodicity break along the f-element series with the reversal of T1 relaxation times of the 1:1 and 1:2 complexes and the preferential formation of the long T1 species for the early lanthanides versus the short T1 species for the late lanthanides, americium, and curium. Given the broad variety of POM ligands that exist, with many of them containing NMR-active nuclei, the combined POM-NMR approach reported here opens a new avenue to investigate difficult-to-study elements such as heavy actinides and other radionuclides.

3.
Environ Sci Technol ; 57(49): 20830-20843, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897703

RESUMO

Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.


Assuntos
Elementos da Série Actinoide , Metaloproteínas , Quelantes , Elementos da Série Actinoide/química , Minerais , Carbonato de Cálcio , Carbonatos
4.
J Synchrotron Radiat ; 29(Pt 2): 315-322, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254293

RESUMO

The solution-state interactions of plutonium and berkelium with the octadentate chelator 3,4,3-LI(1,2-HOPO) (343-HOPO) were investigated and characterized by X-ray absorption spectroscopy, which revealed in situ reductive decomposition of the tetravalent species of both actinide metals to yield Pu(III) and Bk(III) coordination complexes. X-ray absorption near-edge structure (XANES) measurements were the first indication of in situ synchrotron redox chemistry as the Pu threshold and white-line position energies for Pu-343-HOPO were in good agreement with known diagnostic Pu(III) species, whereas Bk-343-HOPO results were found to mirror the XANES behavior of Bk(III)-DTPA. Extended X-ray absorption fine structure results revealed An-OHOPO bond distances of 2.498 (5) and 2.415 (2) Šfor Pu and Bk, respectively, which match well with bond distances obtained for trivalent actinides and 343-HOPO via density functional theory calculations. Pu(III)- and Bk(III)-343-HOPO data also provide initial insight into actinide periodicity as they can be compared with previous results with Am(III)-, Cm(III)-, Cf(III)-, and Es(III)-343-HOPO, which indicate there is likely an increase in 5f covalency and heterogeneity across the actinide series.


Assuntos
Complexos de Coordenação , Plutônio , Berkélio , Quelantes/química , Plutônio/química
5.
J Am Chem Soc ; 143(38): 15769-15783, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34542285

RESUMO

Anthropogenic radionuclides, including long-lived heavy actinides such as americium and curium, represent the primary long-term challenge for management of nuclear waste. The potential release of these wastes into the environment necessitates understanding their interactions with biogeochemical compounds present in nature. Here, we characterize the interactions between the heavy actinides, Am3+ and Cm3+, and the natural lanthanide-binding protein, lanmodulin (LanM). LanM is produced abundantly by methylotrophic bacteria, including Methylorubrum extorquens, that are widespread in the environment. We determine the first stability constant for an Am3+-protein complex (Am3LanM) and confirm the results with Cm3LanM, indicating a ∼5-fold higher affinity than that for lanthanides with most similar ionic radius, Nd3+ and Sm3+, and making LanM the strongest known heavy actinide-binding protein. The protein's high selectivity over 243Am's daughter nuclide 239Np enables lab-scale actinide-actinide separations as well as provides insight into potential protein-driven mobilization for these actinides in the environment. The luminescence properties of the Cm3+-LanM complex, and NMR studies of Gd3+-LanM, reveal that lanmodulin-bound f-elements possess two coordinated solvent molecules across a range of metal ionic radii. Finally, we show under a wide range of environmentally relevant conditions that lanmodulin effectively outcompetes desferrioxamine B, a hydroxamate siderophore previously proposed to be important in trivalent actinide mobility. These results suggest that natural lanthanide-binding proteins such as lanmodulin may play important roles in speciation and mobility of actinides in the environment; it also suggests that protein-based biotechnologies may provide a new frontier in actinide remediation, detection, and separations.


Assuntos
Amerício/química , Proteínas de Bactérias/química , Complexos de Coordenação/química , Cúrio/química , Íons/química , Elementos da Série dos Lantanídeos/química , Medições Luminescentes , Substâncias Macromoleculares , Methylobacterium extorquens/química , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade
6.
Inorg Chem ; 60(2): 973-981, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33356197

RESUMO

The solution-state interactions between octadentate hydroxypyridinone (HOPO) and catecholamide (CAM) chelating ligands and uranium were investigated and characterized by UV-visible spectrophotometry and X-ray absorption spectroscopy (XAS), as well as electrochemically via spectroelectrochemistry (SEC) and cyclic voltammetry (CV) measurements. Depending on the selected chelator, we demonstrate the controlled ability to bind and stabilize UIV, generating with 3,4,3-LI(1,2-HOPO), a tetravalent uranium complex that is practically inert toward oxidation or hydrolysis in acidic, aqueous solution. At physiological pH values, we are also able to bind and stabilize UIV to a lesser extent, as evidenced by the mix of UIV and UVI complexes observed via XAS. CV and SEC measurements confirmed that the UIV complex formed with 3,4,3-LI(1,2-HOPO) is redox inert in acidic media, and UVI ions can be reduced, likely proceeding via a two-electron reduction process.

7.
Inorg Chem ; 59(17): 11855-11867, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32686425

RESUMO

Lanmodulin (LanM) is a recently discovered protein that undergoes a large conformational change in response to rare-earth elements (REEs). Here, we use multiple physicochemical methods to demonstrate that LanM is the most selective macromolecule for REEs characterized to date and even outperforms many synthetic chelators. Moreover, LanM exhibits metal-binding properties and structural stability unseen in most other metalloproteins. LanM retains REE binding down to pH ≈ 2.5, and LanM-REE complexes withstand high temperature (up to 95 °C), repeated acid treatments, and up to molar amounts of competing non-REE metal ions (including Mg, Ca, Zn, and Cu), allowing the protein's use in harsh chemical processes. LanM's unrivaled properties were applied to metal extraction from two distinct REE-containing industrial feedstocks covering a broad range of REE and non-REE concentrations, namely, precombustion coal and electronic waste leachates. After only a single all-aqueous step, quantitative and selective recovery of the REEs from all non-REEs initially present (Li, Na, Mg, Ca, Sr, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, and U) was achieved, demonstrating the universal selectivity of LanM for REEs against non-REEs and its potential application even for industrial low-grade sources, which are currently underutilized. Our work indicates that biosourced macromolecules such as LanM may offer a new paradigm for extractive metallurgy and other applications involving f-elements.

8.
Mol Psychiatry ; 23(10): 2050-2056, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29158579

RESUMO

Bipolar disorder (BD) is a prevalent mood disorder that tends to cluster in families. Despite high heritability estimates, few genetic susceptibility factors have been identified over decades of genetic research. One possible interpretation for the shortcomings of previous studies to detect causative genes is that BD is caused by highly penetrant rare variants in many genes. We explored this hypothesis by sequencing the exomes of affected individuals from 40 well-characterized multiplex families. We identified rare variants segregating with affected status in many interesting genes, and found an enrichment of deleterious variants in G protein-coupled receptor (GPCR) family genes, which are important drug targets. Furthermore, we showed targeted downstream GPCR dysregulation for some of the variants that may contribute to disease pathology. Particularly interesting was the finding of a rare and functionally relevant nonsense mutation in the corticotropin-releasing hormone receptor 2 (CRHR2) gene that tracked with affected status in one family. By focusing on rare variants in informative families, we identified key biochemical pathways likely implicated in this complex disorder.


Assuntos
Transtorno Bipolar/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Transtorno Bipolar/metabolismo , Estudos de Casos e Controles , Família , Feminino , Frequência do Gene/genética , Ligação Genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Receptores de Hormônio Liberador da Corticotropina/genética , Sequenciamento do Exoma
9.
Clin Genet ; 94(2): 252-258, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29700810

RESUMO

Inherited bone marrow failure syndromes (IBMFS) are caused by mutations in genes involved in genomic stability. Although they may be recognized by the association of typical clinical features, variable penetrance and expressivity are common, and clinical diagnosis is often challenging. DNAJC21, which is involved in ribosome biogenesis, was recently linked to bone marrow failure. However, the specific phenotype and natural history remain to be defined. We correlate molecular data, phenotype, and clinical history of 5 unreported affected children and all individuals reported in the literature. All patients present features consistent with IBMFS: bone marrow failure, growth retardation, failure to thrive, developmental delay, recurrent infections, and skin, teeth or hair abnormalities. Additional features present in some individuals include retinal abnormalities, pancreatic insufficiency, liver cirrhosis, skeletal abnormalities, congenital hip dysplasia, joint hypermobility, and cryptorchidism. We suggest that DNAJC21-related diseases constitute a distinct IBMFS, with features overlapping Shwachman-Diamond syndrome and Dyskeratosis congenita, and additional characteristics that are specific to DNAJC21 mutations. The full phenotypic spectrum, natural history, and optimal management will require more reports. Considering the aplastic anemia, the possible increased risk for leukemia, and the multisystemic features, we provide a checklist for clinical evaluation at diagnosis and regular follow-up.


Assuntos
Anormalidades Múltiplas/genética , Anemia Aplástica/genética , Doenças da Medula Óssea/genética , Instabilidade Genômica/genética , Proteínas de Choque Térmico HSP40/genética , Hemoglobinúria Paroxística/genética , Anormalidades Múltiplas/fisiopatologia , Anemia Aplástica/diagnóstico , Anemia Aplástica/patologia , Anemia Aplástica/fisiopatologia , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/fisiopatologia , Transtornos da Insuficiência da Medula Óssea , Pré-Escolar , Disceratose Congênita/genética , Disceratose Congênita/fisiopatologia , Insuficiência Pancreática Exócrina/genética , Insuficiência Pancreática Exócrina/fisiopatologia , Feminino , Efeito Fundador , Hemoglobinúria Paroxística/diagnóstico , Hemoglobinúria Paroxística/fisiopatologia , Humanos , Lactente , Lipomatose/genética , Lipomatose/fisiopatologia , Masculino , Mutação , Fenótipo , Ribossomos/genética , Síndrome de Shwachman-Diamond , Telômero/genética
11.
Inorg Chem ; 57(9): 5352-5363, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29624372

RESUMO

The hydroxypyridinone ligand 3,4,3-LI(1,2-HOPO) is a promising agent for biological decorporation of radionuclides, and allows spectroscopic detection of many lanthanide (Ln) and actinide (An) species via sensitized luminescence. Despite the manifest uses of this ligand, the structural and thermodynamic properties of its complexes across the An series remain understudied. Theoretical investigations of the binding of An(III) and An(IV) ions, from actinium to einsteinium, by the 3,4,3-LI(1,2-HOPO) ligand, as well as experimental extended X-ray absorption fine structure (EXAFS) studies on the trivalent americium, curium, and californium complexes were employed to address the resulting structures, thermodynamic parameters, redox properties, and corresponding electronic configurations. An(IV) ions were found to form much stronger complexes than An(III) ions, consistent with experimental measurements. Complexation of both An(III) and An(IV) ions generally becomes more favorable for heavier actinides, reflecting increased energy degeneracy driven covalency and concomitant orbital mixing between the 5f orbitals of the An ions and the π orbitals of the ligand. Notably, the ability of this ligand to either accept or donate electron density as needed from its pyridine rings is found to be key to its extraordinary stability across the actinide series.

12.
Inorg Chem ; 57(22): 14337-14346, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30372069

RESUMO

The solution chemistry of a chelator developed for 227Th targeted alpha therapy was probed. The compound of interest is an octadentate ligand comprising four N-methyl-3-hydroxy-pyridine-2-one metal-binding units, two tertiary amine groups, and one carboxylate arm appended for bioconjugation. The seven p Ka values of the ligand and the stability constants of complexes formed with Th(IV), Hf(IV), Zr(IV), Gd(III), Eu(III), Al(III), and Fe(III) were determined. The ligand exhibits extreme thermodynamic selectivity toward tetravalent metal ions with a ca. 20 orders of magnitude difference between the formation constant of the Th(IV) species formed at physiological pH, namely [ThL]-, and that of its Eu(III) analogue. Likewise, log ß110 values of 41.7 ± 0.3 and 26.9 ± 0.3 (T = 25 °C) were measured for [ThL]- and [FeIIIL]2-, respectively, highlighting the high affinity and selectivity of the ligand for Th ions over potentially competing endogenous metals. Single crystal X-ray analysis of the Fe(III) complex revealed a dinuclear 2:2 metal:chelator complex crystallizing in the space group P1̅. The formation of this dimeric species is likely favored by several intramolecular hydrogen bonds and the protonation state of the chelator in acidic media. LIII edge EXAFS data on the Th(IV) complexes of both the ligand and a monoclonal antibody conjugate revealed the expected mononuclear 1:1 metal:chelator coordination environment. This was also confirmed by high resolution mass spectrometry. Finally, kinetic experiments demonstrated that labeling the bioconjugated ligand with Th(IV) could be achieved and completed after 1 h at room temperature, reinforcing the high suitability of this chelator for 227Th targeted alpha therapy.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Piridonas/química , Compostos Radiofarmacêuticos/química , Tório/química , Anticorpos Monoclonais Humanizados/química , Cinética , Ligantes , Estrutura Molecular , Termodinâmica , Espectroscopia por Absorção de Raios X
13.
Angew Chem Int Ed Engl ; 57(17): 4521-4526, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29473263

RESUMO

The chemistry of trivalent transplutonium ions (Am3+ , Cm3+ , Bk3+ , Cf3+ , Es3+ …) is usually perceived as monotonic and paralleling that of the trivalent lanthanide series. Herein, we present the first extended X-ray absorption fine structure (EXAFS) study performed on a series of aqueous heavy actinide chelates, extending past Cm. The results obtained on diethylenetriaminepentaacetic acid (DTPA) complexes of trivalent Am, Cm, Bk, and Cf show a break to much shorter metal-oxygen nearest-neighbor bond lengths in the case of Cf3+ . Corroborating those results, density functional theory calculations, extended to Es3+ , suggest that the shorter Cf-O and Es-O bonds could arise from the departure of the coordinated water molecule and contraction of the ligand around the metal relative to the other [MIII DTPA(H2 O)]2- (M=Am, Cm, Bk) complexes. Taken together, these experimental and theoretical results demonstrate inhomogeneity within the trivalent transplutonium series that has been insinuated and debated in recent years, and that may also be leveraged for future nuclear waste reprocessing technologies.

15.
Genetica ; 145(6): 455-468, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28939989

RESUMO

This review covers nearly 20 years of studies on the ecology, physiology and genetics of the Hymenoptera Cotesia sesamiae, an African parasitoid of Lepidoptera that reduces populations of common maize borers in East and South Africa. The first part of the review presents studies based on sampling of C. sesamiae from maize crops in Kenya. From this agrosystem including one host plant and three main host borer species, studies revealed two genetically differentiated populations of C. sesamiae species adapted to their local host community, and showed that their differentiation involved the joint evolution of virulence genes and sensory mechanisms of host acceptance, reinforced by reproductive incompatibility due to Wolbachia infection status and natural inbreeding. In the second part, we consider the larger ecosystem of wild Poales plant species hosting many Lepidoptera stem borer species that are potential hosts for C. sesamiae. The hypothesis of other host-adapted C. sesamiae populations was investigated based on a large sampling of stem borer larvae on various Poales across sub-Saharan Africa. The sampling provided information on the respective contribution of local hosts, biogeography and Wolbachia in the genetic structure of C. sesamiae populations. Molecular evolution analyses highlighted that several bracovirus genes were under positive selection, some of them being under different selection pressure in C. sesamiae populations adapted to different hosts. This suggests that C. sesamiae host races result from co-evolution acting at the local scale on different bracovirus genes. The third part considers the mechanisms driving specialization. C. sesamiae host races are more or less host-specialized. This character is crucial for efficient and environmentally-safe use of natural enemies for biological control of pests. One method to get an insight in the evolutionary stability of host-parasite associations is to characterize the phylogenetic relationships between the so-called host-races. Based on the construction of a phylogeny of C. sesamiae samples from various host- and plant species, we revealed three main lineages. Mechanisms of differentiation are discussed with regard to the geography and ecology of the samples. One of the lineage presented all the hallmarks of a distinct species, which has been morphologically described and is now studied in the perspective of being used as biological control agent against Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae), a major maize pest in West Africa and Mediterranean countries (see Benoist et al. 2017). The fourth part reviews past and present use of C. sesamiae in biological control, and points out the interest of such molecular ecology studies to reconcile biodiversity and food security stakes in future biological control.


Assuntos
Agentes de Controle Biológico , Evolução Biológica , Vespas/fisiologia , Adaptação Biológica , Animais , Especiação Genética , Interações Hospedeiro-Parasita , Quênia , Plantas
16.
Inorg Chem ; 56(21): 12930-12937, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29019408

RESUMO

Recent efforts to activate the strong uranium-oxygen bonds in the dioxo uranyl cation have been limited to single oxo-group activation through either uranyl reduction and functionalization in solution, or by collision induced dissociation (CID) in the gas-phase, using mass spectrometry (MS). Here, we report and investigate the surprising double activation of uranyl by an organic ligand, 3,4,3-LI(CAM), leading to the formation of a formal U6+ chelate in the gas-phase. The cleavage of both uranyl oxo bonds was experimentally evidenced by CID, using deuterium and 18O isotopic substitutions, and by infrared multiple photon dissociation (IRMPD) spectroscopy. Density functional theory (DFT) computations predict that the overall reaction requires only 132 kJ/mol, with the first oxygen activation entailing about 107 kJ/mol. Combined with analysis of similar, but unreactive ligands, these results shed light on the chelation-driven mechanism of uranyl oxo bond cleavage, demonstrating its dependence on the presence of ligand hydroxyl protons available for direct interactions with the uranyl oxygens.

17.
J Invertebr Pathol ; 147: 157-168, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27642089

RESUMO

Recent studies have highlighted that the accidental acquisition of DNA from other species by invertebrate genomes is much more common than originally thought. The transferred DNAs are of bacterial or eukaryote origin and in both cases the receiver species may end up utilising the transferred genes for its own benefit. Frequent contact with prokaryotic DNA from symbiotic endocellular bacteria may predispose invertebrates to incorporate this genetic material into their genomes. Increasing evidence also points to viruses as major players in transferring genes and mobile elements between the species they infect. Unexpectedly a gene flux between Hymenoptera and Lepidoptera mediated by endogenous viruses of parasitic wasps has been recently unravelled, suggesting we are probably just seeing the tip of the iceberg concerning horizontal gene transfers in invertebrates. In the context of insect for feed and food, if the new technology of insect genome editing (such as Crisper/Cas9) were used to modify the genome of reared insects it is important to take into account the risk that an introduced gene can be transferred. More generally, although insects are traditionally consumed in Asia and Africa, knowledge on insect viruses is still limited rendering it difficult to predict the impact they might have in the context of insect rearing at an industrial scale.


Assuntos
Transferência Genética Horizontal , Genoma , Invertebrados/genética , Animais , Genes Bacterianos , Invertebrados/microbiologia , Simbiose/genética
18.
Clin Genet ; 89(6): 733-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26936630

RESUMO

Missense MECP2 variants can have various phenotypic effects ranging from a normal phenotype to typical Rett syndrome (RTT). In females, the phenotype can also be influenced by the X-inactivation pattern. In this study, we present detailed clinical descriptions of six patients with a rare base-pair substitution affecting Arg309 at the C-terminal end of the transcriptional repression domain (TRD). All patients have intellectual disability and present with some RTT features, but they do not fulfill the clinical criteria for typical or atypical RTT. Most of the patients also have mild facial dysmorphism. Intriguingly, the mother of an affected male patient is an asymptomatic carrier of this variant. It is therefore likely that the p.(Arg309Trp) variation does not necessarily lead to male lethality, and it results in a wide range of clinical features in females, probably influenced by different X-inactivation patterns in target tissues.


Assuntos
Predisposição Genética para Doença/genética , Deficiência Intelectual/genética , Proteína 2 de Ligação a Metil-CpG/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Sequência de Aminoácidos , Sítios de Ligação/genética , Análise Mutacional de DNA/métodos , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Fenótipo , Síndrome de Rett/genética , Síndrome de Rett/patologia , Homologia de Sequência de Aminoácidos
19.
Inorg Chem ; 55(12): 5946-56, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27245403

RESUMO

This work determines the potential of solid-state NMR techniques to probe proton, alkali, and niobium environments in Lindqvist salts. Na7HNb6O19·15H2O (1), K8Nb6O19·16H2O (2), and Na8Ta6O19·24.5H2O (3) have been studied by solid-state static and magic angle spinning (MAS) NMR at high and ultrahigh magnetic field (16.4 and 19.9 T). (1)H MAS NMR was found to be a convenient and straightforward tool to discriminate between protonated and nonprotonated clusters AxH8-xM6O19·nH2O (A = alkali ion; M = Nb, Ta). (93)Nb MAS NMR studies at different fields and MAS rotation frequencies have been performed on 1. For the first time, the contributions of NbO5Oµ2H sites were clearly distinguished from those assigned to NbO6 sites in the hexaniobate cluster. The strong broadening of the resonances obtained under MAS was interpreted by combining chemical shift anisotropy (CSA) with quadrupolar effects and by using extensive fitting of the line shapes. In order to obtain the highest accuracy for all NMR parameters (CSA and quadrupolar), (93)Nb WURST QCPMG spectra in the static mode were recorded at 16.4 T for sample 1. The (93)Nb NMR spectra were interpreted in connection with the XRD data available in the literature (i.e., fractional occupancies of the NbO5Oµ2H sites). 1D (23)Na MAS and 2D (23)Na 3QMAS NMR studies of 1 revealed several distinct sodium sites. The multiplicity of the sites was again compared to structural details previously obtained by single-crystal X-ray diffraction (XRD) studies. The (23)Na MAS NMR study of 3 confirmed the presence of a much larger distribution of sodium sites in accordance with the 10 sodium sites predicted by XRD. Finally, the effect of Nb/Ta substitutions in 1 was also probed by multinuclear MAS NMR ((1)H, (23)Na, and (93)Nb).

20.
Inorg Chem ; 55(22): 11930-11936, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27802058

RESUMO

Targeted α therapy holds tremendous potential as a cancer treatment: it offers the possibility of delivering a highly cytotoxic dose to targeted cells while minimizing damage to surrounding healthy tissue. The metallic α-generating radioisotopes 225Ac and 227Th are promising radionuclides for therapeutic use, provided adequate chelation and targeting. Here we demonstrate a new chelating platform composed of a multidentate high-affinity oxygen-donating ligand 3,4,3-LI(CAM) bound to the mammalian protein siderocalin. Respective stability constants log ß110 = 29.65 ± 0.65, 57.26 ± 0.20, and 47.71 ± 0.08, determined for the EuIII (a lanthanide surrogate for AcIII), ZrIV, and ThIV complexes of 3,4,3-LI(CAM) through spectrophotometric titrations, reveal this ligand to be one of the most powerful chelators for both trivalent and tetravalent metal ions at physiological pH. The resulting metal-ligand complexes are also recognized with extremely high affinity by the siderophore-binding protein siderocalin, with dissociation constants below 40 nM and tight electrostatic interactions, as evidenced by X-ray structures of the protein:ligand:metal adducts with ZrIV and ThIV. Finally, differences in biodistribution profiles between free and siderocalin-bound 238PuIV-3,4,3-LI(CAM) complexes confirm in vivo stability of the protein construct. The siderocalin:3,4,3-LI(CAM) assembly can therefore serve as a "lock" to consolidate binding to the therapeutic 225Ac and 227Th isotopes or to the positron emission tomography emitter 89Zr, independent of metal valence state.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Proteínas/química , Radioterapia/métodos , Tório/química , Zircônio/química , Animais , Complexos de Coordenação/farmacocinética , Feminino , Ligantes , Camundongos , Modelos Químicos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA