RESUMO
Plant community productivity generally increases with biodiversity, but the strength of this relationship exhibits strong empirical variation. In meta-food-web simulations, we addressed if the spatial overlap in plants' resource access and animal space-use can explain such variability. We found that spatial overlap of plant resource access is a prerequisite for positive diversity-productivity relationships, but causes exploitative competition that can lead to competitive exclusion. Space-use of herbivores causes apparent competition among plants, resulting in negative relationships. However, space-use of larger top predators integrates sub-food webs composed of smaller species, offsetting the negative effects of exploitative and apparent competition and leading to strongly positive diversity-productivity relationships. Overall, our results show that spatial overlap of plants' resource access and animal space-use can greatly alter the strength and sign of such relationships. In particular, the scaling of animal space-use effects opens new perspectives for linking landscape processes without effects on biodiversity to productivity patterns.
Assuntos
Biodiversidade , Ecossistema , Animais , Cadeia Alimentar , Plantas , Herbivoria , BiomassaRESUMO
Understanding the formation of feeding links provides insights into processes underlying food webs. Generally, predators feed on prey within a certain body-size range, but a systematic quantification of such feeding niches is lacking. We developed a size-constrained feeding-niche (SCFN) model and parameterized it with information on both realized and non-realized feeding links in 72 aquatic and 65 terrestrial food webs. Our analyses revealed profound differences in feeding niches between aquatic and terrestrial predators and variation along a temperature gradient. Specifically, the predator-prey body-size ratio and the range in prey sizes increase with the size of aquatic predators, whereas they are nearly constant across gradients in terrestrial predator size. Overall, our SCFN model well reproduces the feeding relationships and predation architecture across 137 natural food webs (including 3878 species and 136,839 realized links). Our results illuminate the organisation of natural food webs and enables novel trait-based and environment-explicit modelling approaches.
Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Tamanho Corporal , Modelos TeóricosRESUMO
Wastewater treatment plants (WWTPs) have greatly improved water quality globally. However, treated effluents still contain a complex cocktail of pollutants whose environmental effects might go unnoticed, masked by additional stressors in the receiving waters or by spatiotemporal variability. We conducted a BACI (Before-After/Control-Impact) ecosystem manipulation experiment, where we diverted part of the effluent of a large tertiary WWTP into a small, unpolluted stream to assess the effects of a well-treated and highly diluted effluent on riverine diversity and food web dynamics. We sampled basal food resources, benthic invertebrates and fish to search for changes on the structure and energy transfer of the food web with the effluent. Although effluent toxicity was low, it reduced diversity, increased primary production and herbivory, and reduced energy fluxes associated to terrestrial inputs. Altogether, the effluent decreased total energy fluxes in stream food webs, showing that treated wastewater can lead to important ecosystem-level changes, affecting the structure and functioning of stream communities even at high dilution rates. The present study shows that current procedures to treat wastewater can still affect freshwater ecosystems and highlights the need for further efforts to treat polluted waters to conserve aquatic food webs.
Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Ecossistema , Cadeia Alimentar , Poluentes Químicos da Água/análise , Rios/químicaRESUMO
Resource-use complementarity of producer species is often invoked to explain the generally positive diversity-productivity relationships. Additionally, multi-trophic interactions that link processes across trophic levels have received increasing attention as a possible key driver. Given that both are integral to natural ecosystems, their interactive effect should be evident but has remained hidden. We address this issue by analysing diversity-productivity relationships in a simulation experiment of producer communities nested within complex food-webs, manipulating resource-use complementarity and multi-trophic animal richness. We show that these two mechanisms interactively create diverse communities of complementary producer species. This shapes diversity-productivity relationships such that their joint contribution generally exceeds their individual effects. Specifically, multi-trophic interactions in animal-rich ecosystems facilitate producer coexistence by preventing competitive exclusion despite overlaps in resource-use, which increases the realised complementarity. The interdependence of food-webs and producer complementarity in creating biodiversity-productivity relationships highlights the importance to adopt a multi-trophic perspective on biodiversity-ecosystem functioning relationships.
Assuntos
Biodiversidade , Ecossistema , Animais , Simulação por Computador , Cadeia AlimentarRESUMO
Despite intensive research on species dissimilarity patterns across communities (i.e. ß-diversity), we still know little about their implications for variation in food-web structures. Our analyses of 50 lake and 48 forest soil communities show that, while species dissimilarity depends on environmental and spatial gradients, these effects are only weakly propagated to the networks. Moreover, our results show that species and food-web dissimilarities are consistently correlated, but that much of the variation in food-web structure across spatial, environmental, and species gradients remains unexplained. Novel food-web assembly models demonstrate the importance of biotic filtering during community assembly by (1) the availability of resources and (2) limiting similarity in species' interactions to avoid strong niche overlap and thus competitive exclusion. This reveals a strong signature of biotic filtering processes during local community assembly, which constrains the variability in structural food-web patterns across local communities despite substantial turnover in species composition.
Assuntos
Biodiversidade , Florestas , Ecossistema , Cadeia Alimentar , SoloRESUMO
Most studies of plant-animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human-driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant-animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions.
Assuntos
Polinização , Simbiose , Animais , Ecossistema , PlantasRESUMO
Food webs capture the trophic relationships and energy fluxes between species, which has fundamental impacts on ecosystem functioning and stability. Within a food web, the energy flux distribution between a predator and its prey species is shaped by food quantity-quality trade-offs and the contiguity of foraging. But the distribution of energy fluxes among prey species as well as its drivers and implications remain unclear. Here we used 157 aquatic food webs, which contain explicit energy flux information, to examine whether a predator's foraging is asymmetric and biased towards lower or higher trophic levels, and how these patterns may change with trophic level. We also evaluate how traditional topology-based approaches may over- or under-estimate a predator's trophic level and omnivory by ignoring the asymmetric foraging patterns. Our results demonstrated the prevalence of asymmetric foraging in natural aquatic food webs. Although predators prefer prey at higher trophic levels with potentially higher food quality, they obtain their energy mostly from lower trophic levels with a higher food quantity. Both tendencies, that is, stronger feeding preference for prey at higher trophic levels and stronger energetic reliance on prey at lower trophic levels are alleviated for predators at higher trophic levels. The asymmetric foraging lowers trophic levels and omnivory at both species and food web levels, compared to estimates from traditional topology-based approaches. Such overestimations by topology-based approaches are most pronounced for predators at lower trophic levels and communities with higher number of trophic species. Our study highlights the importance of energy flux information in understanding the foraging behaviour of predators as well as the structural complexity of natural food webs. The increasing availability of flux-based food web data will thus provide new opportunities to reconcile food web structure, functioning and stability.
Assuntos
Ecossistema , Cadeia Alimentar , Animais , Comportamento PredatórioRESUMO
Spatial and trophic processes profoundly influence biodiversity, yet ecological theories often treat them independently. The theory of island biogeography and related theories on metacommunities predict higher species richness with increasing area across islands or habitat patches. In contrast, food-web theory explores the effects of traits and network structure on coexistence within local communities. Exploring the mechanisms by which landscape configurations interact with food-web dynamics in shaping metacommunities is important for our understanding of biodiversity. Here, we use a meta-food-web model to explore the role of landscape configuration in determining species richness and show that when habitat patches are interconnected by dispersal, more species can persist on smaller islands than predicted by classical theory. When patch sizes are spatially aggregated, this effect flattens the slope of the species-area relationship. Surprisingly, when landscapes have random patch-size distributions, the slope of the species-area relationships can even flip and become negative. This could be explained by higher biomass densities of lower trophic levels that then support species occupying higher trophic levels, which only persist on small and well-connected patches. This highlights the importance of simultaneously considering landscape configuration and local food-web dynamics to understand drivers of species-area relationships in metacommunities.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Assuntos
Biodiversidade , Cadeia Alimentar , Modelos Biológicos , Ecossistema , AnimaisRESUMO
At macroecological scales, the provision of Nature's contributions to people (NCP) is mostly estimated with biophysical information, ignoring the ecological processes underlying them. This hinders our ability to properly quantify the impact of declining biodiversity and the provision of NCP. Here, we propose a framework that combines local-scale food web energy flux approaches and large-scale biodiversity models to evaluate ecosystem functions and flux-related NCP at extensive spatiotemporal scales. Importantly, this approach has the potential to upscale ecosystem functions, assess the vulnerability of flux-related NCP to the climate crisis, and support the development of multiscale mitigation policies.
Assuntos
Biodiversidade , Ecossistema , Humanos , Mudança Climática , Conservação dos Recursos Naturais , Cadeia Alimentar , Modelos BiológicosRESUMO
Higher temperatures are expected to reduce species coexistence by increasing energetic demands. However, flexible foraging behaviour could balance this effect by allowing predators to target specific prey species to maximize their energy intake, according to principles of optimal foraging theory. Here we test these assumptions using a large dataset comprising 2,487 stomach contents from six fish species with different feeding strategies, sampled across environments with varying prey availability over 12 years in Kiel Bay (Baltic Sea). Our results show that foraging shifts from trait- to density-dependent prey selectivity in warmer and more productive environments. This behavioural change leads to lower consumption efficiency at higher temperature as fish select more abundant but less energetically rewarding prey, thereby undermining species persistence and biodiversity. By integrating this behaviour into dynamic food web models, our study reveals that flexible foraging leads to lower species coexistence and biodiversity in communities under global warming.
RESUMO
The dataset presents a compilation of stomach contents from six demersal fish species from two functional groups inhabiting the Baltic Sea. It includes detailed information on prey identities, body masses, and biomasses recovered from both the fish's digestive systems and their surrounding environment. Environmental parameters, such as salinity and temperature levels, have been integrated to enrich this dataset. The juxtaposition of information on prey found in stomachs and in the environment provides an opportunity to quantify trophic interactions across different environmental contexts and investigate how fish foraging behaviour adapts to changes in their environment, such as an increase in temperature. The compilation of body mass and taxonomic information for all species allows approaching these new questions using either a taxonomic (based on species identity) or functional trait (based on body mass) approach.
Assuntos
Peixes , Conteúdo Gastrointestinal , Animais , Países Bálticos , Oceanos e MaresRESUMO
Understanding the factors that determine the occurrence and strength of ecological interactions under specific abiotic and biotic conditions is fundamental since many aspects of ecological community stability and ecosystem functioning depend on patterns of interactions among species. Current approaches to mapping food webs are mostly based on traits, expert knowledge, experiments, and/or statistical inference. However, they do not offer clear mechanisms explaining how trophic interactions are affected by the interplay between organism characteristics and aspects of the physical environment, such as temperature, light intensity or viscosity. Hence, they cannot yet predict accurately how local food webs will respond to anthropogenic pressures, notably to climate change and species invasions. Herein, we propose a framework that synthesises recent developments in food-web theory, integrating body size and metabolism with the physical properties of ecosystems. We advocate for combination of the movement paradigm with a modular definition of the predation sequence, because movement is central to predator-prey interactions, and a generic, modular model is needed to describe all the possible variation in predator-prey interactions. Pending sufficient empirical and theoretical knowledge, our framework will help predict the food-web impacts of well-studied physical factors, such as temperature and oxygen availability, as well as less commonly considered variables such as wind, turbidity or electrical conductivity. An improved predictive capability will facilitate a better understanding of ecosystem responses to a changing world.
RESUMO
Models that estimate rates of energy flow in complex food webs often fail to account for species-specific prey selectivity of diverse consumer guilds. While DNA metabarcoding is increasingly used for dietary studies, methodological biases have limited its application for food web modeling. Here, we used data from dietary metabarcoding studies of zooplankton to calculate prey selectivity indices and assess energy fluxes in a pelagic resource-consumer network. We show that food web dynamics are influenced by prey selectivity and temporal match-mismatch in growth cycles and that cyanobacteria are the main source of primary production in the investigated coastal pelagic food web. The latter challenges the common assumption that cyanobacteria are not supporting food web productivity, a result that is increasingly relevant as global warming promotes cyanobacteria dominance. While this study provides a method for how DNA metabarcoding can be used to quantify energy fluxes in a marine food web, the approach presented here can easily be extended to other ecosystems.
Assuntos
Cianobactérias , Cadeia Alimentar , Animais , Ecossistema , Código de Barras de DNA Taxonômico , ZooplânctonRESUMO
Artificial light at night (ALAN) is eroding natural light cycles and thereby changing species distributions and activity patterns. Yet little is known about how ecological interaction networks respond to this global change driver. Here, we assess the scientific basis of the current understanding of community-wide ALAN impacts. Based on current knowledge, we conceptualize and review four major pathways by which ALAN may affect ecological interaction networks by (i) impacting primary production, (ii) acting as an environmental filter affecting species survival, (iii) driving the movement and distribution of species, and (iv) changing functional roles and niches by affecting activity patterns. Using an allometric-trophic network model, we then test how a shift in temporal activity patterns for diurnal, nocturnal and crepuscular species impacts food web stability. The results indicate that diel niche shifts can severely impact community persistence by altering the temporal overlap between species, which leads to changes in interaction strengths and rewiring of networks. ALAN can thereby lead to biodiversity loss through the homogenization of temporal niches. This integrative framework aims to advance a predictive understanding of community-level and ecological-network consequences of ALAN and their cascading effects on ecosystem functioning. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Assuntos
Ecossistema , Poluição Luminosa , Cadeia Alimentar , Biodiversidade , Fotoperíodo , LuzRESUMO
The ratio of predator-to-prey biomass is a key element of trophic structure that is typically investigated from a food chain perspective, ignoring channels of energy transfer (e.g. omnivory) that may govern community structure. Here, we address this shortcoming by characterising the biomass structure of 141 freshwater, marine and terrestrial food webs, spanning a broad gradient in community biomass. We test whether sub-linear scaling between predator and prey biomass (a potential signal of density-dependent processes) emerges within ecosystem types and across levels of biological organisation. We find a consistent, sub-linear scaling pattern whereby predator biomass scales with the total biomass of their prey with a near ¾-power exponent within food webs - i.e. more prey biomass supports proportionally less predator biomass. Across food webs, a similar sub-linear scaling pattern emerges between total predator biomass and the combined biomass of all prey within a food web. These general patterns in trophic structure are compatible with a systematic form of density dependence that holds among complex feeding interactions across levels of organization, irrespective of ecosystem type.
Assuntos
Ecossistema , Cadeia Alimentar , Animais , Biomassa , Água Doce , Comportamento PredatórioRESUMO
The Amazon forest has the highest biodiversity on Earth. However, information on Amazonian vertebrate diversity is still deficient and scattered across the published, peer-reviewed, and gray literature and in unpublished raw data. Camera traps are an effective non-invasive method of surveying vertebrates, applicable to different scales of time and space. In this study, we organized and standardized camera trap records from different Amazon regions to compile the most extensive data set of inventories of mammal, bird, and reptile species ever assembled for the area. The complete data set comprises 154,123 records of 317 species (185 birds, 119 mammals, and 13 reptiles) gathered from surveys from the Amazonian portion of eight countries (Brazil, Bolivia, Colombia, Ecuador, French Guiana, Peru, Suriname, and Venezuela). The most frequently recorded species per taxa were: mammals: Cuniculus paca (11,907 records); birds: Pauxi tuberosa (3713 records); and reptiles: Tupinambis teguixin (716 records). The information detailed in this data paper opens up opportunities for new ecological studies at different spatial and temporal scales, allowing for a more accurate evaluation of the effects of habitat loss, fragmentation, climate change, and other human-mediated defaunation processes in one of the most important and threatened tropical environments in the world. The data set is not copyright restricted; please cite this data paper when using its data in publications and we also request that researchers and educators inform us of how they are using these data.
Assuntos
Florestas , Mamíferos , Animais , Biodiversidade , Aves , Brasil , Humanos , Répteis , VertebradosRESUMO
Global change alters ecological communities with consequences for ecosystem processes. Such processes and functions are a central aspect of ecological research and vital to understanding and mitigating the consequences of global change, but also those of other drivers of change in organism communities. In this context, the concept of energy flux through trophic networks integrates food-web theory and biodiversity-ecosystem functioning theory and connects biodiversity to multitrophic ecosystem functioning. As such, the energy-flux approach is a strikingly effective tool to answer central questions in ecology and global-change research. This might seem straight forward, given that the theoretical background and software to efficiently calculate energy flux are readily available. However, the implementation of such calculations is not always straight forward, especially for those who are new to the topic and not familiar with concepts central to this line of research, such as food-web theory or metabolic theory. To facilitate wider use of energy flux in ecological research, we thus provide a guide to adopting energy-flux calculations for people new to the method, struggling with its implementation, or simply looking for background reading, important resources, and standard solutions to the problems everyone faces when starting to quantify energy fluxes for their community data. First, we introduce energy flux and its use in community and ecosystem ecology. Then, we provide a comprehensive explanation of the single steps towards calculating energy flux for community data. Finally, we discuss remaining challenges and exciting research frontiers for future energy-flux research.
RESUMO
1. The structure and dynamics of prey populations are shaped by the foraging behaviours of their predators. Yet, there is still little documentation on how distinct predator foraging types control biodiversity, food-web architecture and ecosystem functioning. 2. We experimentally compared the effects of model fish species of two major foraging types of lake planktivores: a size-selective visual feeder (bluegill), and a filter feeder (gizzard shad). The visual feeder forages on individually captured consumer prey, whereas the filter feeder forages on various prey simultaneously, not only consumers but also primary producers. We ran a 1-month mesocosm experiment cross-classifying a biomass gradient of each predator type. We analysed the effect of each fish on food-web architecture by computing major topological descriptors over time (connectance, link density, omnivory index, etc.). These descriptors were computed from 80 predator-prey binary matrices, using taxa mostly identified at the species level. 3. We found that the visual feeder induced more trophic cul-de-sac (inedible) primary-producer species, lower link density and connectance, and lower levels of food-web omnivory and generalism than the filter feeder. Yet, predator biomass did not affect food-web topology. 4. Our results highlight that top-predator foraging behaviour is a key functional trait that can drive food-web topology and ultimately ecosystem functioning.
Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Biodiversidade , Peixes/fisiologia , Modelos BiológicosRESUMO
Predator-prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator-prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator-prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.
Assuntos
Ecossistema , Cadeia Alimentar , Animais , Tamanho Corporal , Comportamento Predatório , VertebradosRESUMO
With the increase in the number of introduced species each year, biological invasions are considered as one of the most important environmental problems for native biodiversity. In invaded habitats, the establishment of exotic plant species depends on the abiotic and biotic environment. Herbivores and neighboring plants (native or exotic) comprise an important part of the latter. Herbivores cause trophic and non-trophic damage to focal plants, which respond to herbivory by varying their different traits quantitatively (e.g., growth rate and biomass changes) and qualitatively (e.g., variation in morphological and chemical defenses strategies affecting plant palatability). Neighboring plant species also affect functional traits and the fitness of focal plant species, thus herbivore effects on a focal plant could also depend indirectly on the palatability and defensive traits of the neighboring species inside the community. Here, in a first step toward the integration of associational susceptibility/resistance theories in the field of ecological invasion, we performed a microcosm experiment to consider the effects of an exotic crayfish on the growth rate, morphological traits and damage level of three macrophytes (two exotic, one native) growing in pairwise combinations. We found that (i) the response to herbivore presence and to neighboring species identity seemed to be species specific, and (ii) crayfish enhance the fragmentation rate of the two exotic macrophytes Ludwigia grandiflora and Egeria densa in the presence of the native macrophyte Myriophyllum spicatum, which could indirectly facilitate their invasion success. Indeed, fragmentation can increase dispersal abilities of the exotic macrophytes considered in this study as they are able to generate new plants from their fragments. However, our results showed that the interaction herbivore-neighbor species was hardly significant. Our paper presents some first results on associational resistance/susceptibility and lays the foundation for developing a general framework that combines plant community ecology and biological invasion ecology to explain invasive species success.