Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 291(53): 27421-27432, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27738104

RESUMO

Fragment screening and high throughput screening are complementary approaches that combine with structural biology to explore the binding capabilities of an active site. We have used a fragment-based approach on malate synthase (GlcB) from Mycobacterium tuberculosis and discovered several novel binding chemotypes. In addition, the crystal structures of GlcB in complex with these fragments indicated conformational changes in the active site that represent the enzyme conformations during catalysis. Additional structures of the complex with malate and of the apo form of GlcB supported that hypothesis. Comparative analysis of GlcB structures in complex with 18 fragments allowed us to characterize the preferred chemotypes and their binding modes. The fragment structures showed a hydrogen bond to the backbone carbonyl of Met-631. We successfully incorporated an indole group from a fragment into an existing phenyl-diketo acid series. The resulting indole-containing inhibitor was 100-fold more potent than the parent phenyl-diketo acid with an IC50 value of 20 nm.


Assuntos
Malato Sintase/química , Malato Sintase/metabolismo , Malatos/metabolismo , Mycobacterium tuberculosis/enzimologia , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
2.
Biochemistry ; 49(36): 7913-9, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20690660

RESUMO

Kynureninase is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the hydrolytic cleavage of l-kynurenine to give l-alanine and anthranilic acid. beta-Benzoyl-l-alanine, the analogue of l-kynurenine lacking the aromatic amino group, was shown to a good substrate for kynureninase from Pseudomonas fluorescens, and the rate-determining step changes from release of the second product, l-Ala, to formation of the first product, benzoate [Gawandi, V. B., et al. (2004) Biochemistry 43, 3230-3237]. In this work, a series of aryl-substituted beta-benzoyl-dl-alanines was synthesized and evaluated for substrate activity with kynureninase from P. fluorescens. Hammett analysis of k(cat) and k(cat)/K(m) for 4-substituted beta-benzoyl-dl-alanines with electron-withdrawing and electron-donating substituents is nonlinear, with a concave downward curvature. This suggests that there is a change in rate-determining step for benzoate formation with different substituents, from gem-diol formation for electron-donating substituents to C(beta)-C(gamma) bond cleavage for electron-withdrawing substituents. Rapid-scanning stopped-flow kinetic experiments demonstrated that substituents have relatively minor effects on formation of the quinonoid and 348 nm intermediates but have a much greater effect on the formation of the aldol product from reaction of benzaldehyde with the 348 nm intermediate. Since there is a kinetic isotope effect on its formation from beta,beta-dideuterio-beta-(4-trifluoromethylbenzoyl)-dl-alanine, the 348 nm intermediate is proposed to be a vinylogous amide derived from abortive beta-deprotonation of the ketimine intermediate. These results provide additional evidence for a gem-diol intermediate in the catalytic mechanism of kynureninase.


Assuntos
Alanina/análogos & derivados , Proteínas de Bactérias/química , Hidrolases/química , Pseudomonas fluorescens/enzimologia , Proteínas de Bactérias/metabolismo , Catálise , Hidrolases/metabolismo , Cinética , Cinurenina/análogos & derivados , Cinurenina/química , Pseudomonas fluorescens/metabolismo , Especificidade por Substrato
3.
Chem Biol ; 19(12): 1556-67, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23261599

RESUMO

The glyoxylate shunt plays an important role in fatty acid metabolism and has been shown to be critical to survival of several pathogens involved in chronic infections. For Mycobacterium tuberculosis (Mtb), a strain with a defective glyoxylate shunt was previously shown to be unable to establish infection in a mouse model. We report the development of phenyl-diketo acid (PDKA) inhibitors of malate synthase (GlcB), one of two glyoxylate shunt enzymes, using structure-based methods. PDKA inhibitors were active against Mtb grown on acetate, and overexpression of GlcB ameliorated this inhibition. Crystal structures of complexes of GlcB with PDKA inhibitors guided optimization of potency. A selected PDKA compound demonstrated efficacy in a mouse model of tuberculosis. The discovery of these PDKA derivatives provides chemical validation of GlcB as an attractive target for tuberculosis therapeutics.


Assuntos
Antituberculosos/química , Antituberculosos/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Malato Sintase/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/farmacocinética , Desenho de Fármacos , Inibidores Enzimáticos/farmacocinética , Feminino , Humanos , Malato Sintase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos
4.
Biochemistry ; 43(11): 3230-7, 2004 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-15023073

RESUMO

Beta-benzoyl-DL-alanine was synthesized from alpha-bromoacetophenone and diethyl acetamidomalonate. The racemic amino acid was resolved by carboxypeptidase A-catalyzed hydrolysis of the N-trifluoroacetyl derivative. Beta-benzoyl-L-alanine is a good substrate of kynureninase from Pseudomonas fluorescens, with k(cat) and k(cat)/K(m) values of 0.7 s(-1) and 8.0 x 10(4) M(-1) s(-1), respectively, compared to k(cat) = 16.0 s(-1) and k(cat)/K(m) = 6.0 x 10(5) M(-1) s(-1) for L-kynurenine. In contrast to the reaction of L-kynurenine, beta-benzoyl-L-alanine does not exhibit a significant solvent isotope effect on k(cat) ((H)k/(D)k = 0.96 +/- 0.06). The pre-steady-state kinetics of the reaction of beta-benzoyl-L-alanine were investigated by rapid scanning stopped-flow spectrophotometry. The spectra show the formation of a quinonoid intermediate, with lambda(max) = 490 nm, in the dead time of the instrument, which then decays, with k = 210 s(-1), to form a transient intermediate with lambda(max) at 348 nm. In the presence of benzaldehyde, the 348 nm intermediate decays, with k = 0.7 s(-1), to form a quasistable quinonoid species with lambda(max) = 492 nm. Previous studies demonstrated that benzaldehyde can trap an enamine intermediate formed after the C(beta)-C(gamma) bond cleavage [Phillips, R. S., Sundararaju, B., and Koushik, S. V. (1998) Biochemistry 37, 8783-8789]. Thus, the 348 nm intermediate is kinetically competent. The position of the absorption maximum and shape of the band is consistent with a PMP-ketimine intermediate. The results from chemical quenching analysis do not show a burst of benzoate and, thus, also support the formation of benzoate as the rate-determining step. These data suggest that, in contrast to L-kynurenine, for which the rate-determining step was shown to be deprotonation of the pyruvate-ketimine intermediate [Koushik, S. V., Moore, J. A., III, Sundararaju, B., and Phillips, R. S. (1998) Biochemistry 37, 1376-1382], the rate-determining step in the reaction of beta-benzoyl-L-alanine with kynureninase is C(beta)-C(gamma) bond cleavage.


Assuntos
Alanina/análogos & derivados , Alanina/química , Proteínas de Bactérias/química , Hidrolases/química , Pseudomonas fluorescens/enzimologia , Alanina/síntese química , Benzoatos/química , Cinética , Cinurenina/química , Prótons , Ácido Pirúvico/química , Proteínas Recombinantes/química , Espectrofotometria , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA