Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38950903

RESUMO

In higher eukaryotes, tRNA methyltransferase 10A (TRMT10A) is responsible for N1-methylguanosine modification at position nine of various cytoplasmic tRNAs. Pathogenic mutations in TRMT10A cause intellectual disability, microcephaly, diabetes, and short stature in humans, and generate cytotoxic tRNA fragments in cultured cells; however, it is not clear how TRMT10A supports codon translation or brain functions. Here, we generated Trmt10a null mice and showed that tRNAGln(CUG) and initiator methionine tRNA levels were universally decreased in various tissues; the same was true in a human cell line lacking TRMT10A. Ribosome profiling of mouse brain revealed that dysfunction of TRMT10A causes ribosome slowdown at the Gln(CAG) codon and increases translation of Atf4 due to higher frequency of leaky scanning of its upstream open reading frames. Broadly speaking, translation of a subset of mRNAs, especially those for neuronal structures, is perturbed in the mutant brain. Despite not showing discernable defects in the pancreas, liver, or kidney, Trmt10a null mice showed lower body weight and smaller hippocampal postsynaptic densities, which is associated with defective synaptic plasticity and memory. Taken together, our study provides mechanistic insight into the roles of TRMT10A in the brain, and exemplifies the importance of universal tRNA modification during translation of specific codons.

2.
J Colloid Interface Sci ; 675: 893-903, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39002239

RESUMO

Making full use of the captured energy by phosphorescence light-harvesting systems (PLHSs) and the tunable photoluminescence in energy transfer process to realize the multiple applications is still the challenge of PLHSs research. In this study, we have successfully constructed a highly effective PLHS with tunable multicolor luminescence and efficient conversion of photosensitizer types, which can further be used in photocatalytic organic conversion, information anti-counterfeiting and storage. The supramolecular polymer of BDBP-CB[8], which is generated by cucurbit[8]uril (CB[8]) and 4-(4-bromophenyl)-pyridine derivative (BDBP), realizes a phosphorescence emission and a change in luminescence color. Notably, white light emission was achieved and the logic gate systems were constructed utilizing the application of adjustable luminescence color. More interestingly, PLHS can be constructed by employing BDBP-CB[8] as energy donors, Sulforhodamine 101 (SR101) and Cyanine5 (Cy5) as energy acceptors, which results in a remarkably tunable multicolor photoluminescence to achieve the information storage. Furthermore, we have also found that BDBP-CB[8] can serve as type II photosensitizer for the effective production of singlet oxygen (1O2) during the photooxidation process of styrene in aqueous environments, attaining a remarkable output rate reaching as high as 89 %. Particularly, compared with 1O2 produced by type II photosensitizer BDBP-CB[8], the construction of PLHS can effectively convert type II photosensitizer to type I photosensitizer and efficiently generate superoxide anion radical (O2•-), which can be used for photocatalytic cross-dehydrogenative coupling (CDC) reaction in the aqueous solution with a yield of 90 %. Thus, we have created a PLHS that not only achieves tunable multicolor emission for information anti-counterfeiting and storage, but also realizes the conversion of reactive oxygen species (ROS) for different types photocatalytic oxidation reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA