Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 42(2): 231-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646223

RESUMO

Our translational research group focuses on addressing the problem of exercise defects in diabetes with basic research efforts in cell and rodent models and clinical research efforts in subjects with diabetes mellitus. CREB (cAMP-response-element-binding protein) regulates cellular differentiation of neurons, ß-cells, adipocytes and smooth muscle cells; it is also a potent survival factor and an upstream regulator of mitochondrial biogenesis. In diabetes and cardiovascular disease, CREB protein content is decreased in the vascular media, and its regulation in aberrant in ß-cells, neurons and cardiomyocytes. Loss of CREB content and function leads to decreased vascular target tissue resilience when exposed to stressors such as metabolic, oxidative or sheer stress. This basic research programme set the stage for our central hypothesis that diabetes-mediated CREB dysfunction predisposes the diabetes disease progression and cardiovascular complications. Our clinical research programme revealed that diabetes mellitus leads to defects in functional exercise capacity. Our group has determined that the defects in exercise correlate with insulin resistance, endothelial dysfunction, decreased cardiac perfusion and diastolic dysfunction, slowed muscle perfusion kinetics, decreased muscle perfusion and slowed oxidative phosphorylation. Combined basic and clinical research has defined the relationship between exercise and vascular function with particular emphasis on how the signalling to CREB and eNOS [endothelial NOS (nitric oxide synthase)] regulates tissue perfusion, mitochondrial dynamics, vascular function and exercise capacity. The present review summarizes our current working hypothesis that restoration of eNOS/NOS dysfunction will restore cellular homoeostasis and permit an optimal tissue response to an exercise training intervention.


Assuntos
Diabetes Mellitus/metabolismo , Exercício Físico/fisiologia , Mitocôndrias/metabolismo , Adaptação Fisiológica/fisiologia , Doenças Cardiovasculares/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo
2.
Oxid Med Cell Longev ; 2016: 8524267, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034743

RESUMO

Diabetes affects more than 330 million people worldwide and causes elevated cardiovascular disease risk. Mitochondria are critical for vascular function, generate cellular reactive oxygen species (ROS), and are perturbed by diabetes, representing a novel target for therapeutics. We hypothesized that adaptive mitochondrial plasticity in response to nutrient stress would be impaired in diabetes cellular physiology via a nitric oxide synthase- (NOS-) mediated decrease in mitochondrial function. Primary smooth muscle cells (SMCs) from aorta of the nonobese, insulin resistant rat diabetes model Goto-Kakizaki (GK) and the Wistar control rat were exposed to high glucose (25 mM). At baseline, significantly greater nitric oxide evolution, ROS production, and respiratory control ratio (RCR) were observed in GK SMCs. Upon exposure to high glucose, expression of phosphorylated eNOS, uncoupled respiration, and expression of mitochondrial complexes I, II, III, and V were significantly decreased in GK SMCs (p < 0.05). Mitochondrial superoxide increased with high glucose in Wistar SMCs (p < 0.05) with no change in the GK beyond elevated baseline concentrations. Baseline comparisons show persistent metabolic perturbations in a diabetes phenotype. Overall, nutrient stress in GK SMCs caused a persistent decline in eNOS and mitochondrial function and disrupted mitochondrial plasticity, illustrating eNOS and mitochondria as potential therapeutic targets.


Assuntos
Adaptação Fisiológica , Diabetes Mellitus Experimental/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Masculino , Mitocôndrias Musculares/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA