Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 81(19): 3965-3978.e5, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34352205

RESUMO

PIWI proteins and their guiding Piwi-interacting small RNAs (piRNAs) are crucial for fertility and transposon defense in the animal germline. In most species, the majority of piRNAs are produced from distinct large genomic loci, called piRNA clusters. It is assumed that germline-expressed piRNA clusters, particularly in Drosophila, act as principal regulators to control transposons dispersed across the genome. Here, using synteny analysis, we show that large clusters are evolutionarily labile, arise at loci characterized by recurrent chromosomal rearrangements, and are mostly species-specific across the Drosophila genus. By engineering chromosomal deletions in D. melanogaster, we demonstrate that the three largest germline clusters, which account for the accumulation of >40% of all transposon-targeting piRNAs in ovaries, are neither required for fertility nor for transposon regulation in trans. We provide further evidence that dispersed elements, rather than the regulatory action of large Drosophila germline clusters in trans, may be central for transposon defense.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Evolução Molecular , Fertilidade/genética , Família Multigênica , Ovário/fisiologia , Estabilidade de RNA , RNA Interferente Pequeno/genética , Animais , Animais Geneticamente Modificados , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Deleção Cromossômica , Cromossomos de Insetos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ovário/metabolismo , RNA Interferente Pequeno/metabolismo
2.
EMBO J ; 43(8): 1591-1617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480936

RESUMO

The tight control of fate transitions during stem cell differentiation is essential for proper tissue development and maintenance. However, the challenges in studying sparsely distributed adult stem cells in a systematic manner have hindered efforts to identify how the multilayered regulation of gene expression programs orchestrates stem cell differentiation in vivo. Here, we synchronised Drosophila female germline stem cell (GSC) differentiation in vivo to perform in-depth transcriptome and translatome analyses at high temporal resolution. This characterisation revealed widespread and dynamic changes in mRNA level, promoter usage, exon inclusion, and translation efficiency. Transient expression of the master regulator, Bam, drives a first wave of expression changes, primarily modifying the cell cycle program. Surprisingly, as Bam levels recede, differentiating cells return to a remarkably stem cell-like transcription and translation program, with a few crucial changes feeding into a second phase driving terminal differentiation to form the oocyte. Altogether, these findings reveal that rather than a unidirectional accumulation of changes, the in vivo differentiation of stem cells relies on distinctly regulated and developmentally sequential waves.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster , Proteínas de Drosophila/metabolismo , Transcriptoma , Diferenciação Celular/genética , Células Germinativas/metabolismo
3.
Nucleic Acids Res ; 50(D1): D259-D264, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34302483

RESUMO

PIWI-interacting RNAs (piRNAs) and their partnering PIWI proteins defend the animal germline against transposable elements and play a crucial role in fertility. Numerous studies in the past have uncovered many additional functions of the piRNA pathway, including gene regulation, anti-viral defense, and somatic transposon repression. Further, comparative analyses across phylogenetic groups showed that the PIWI/piRNA system evolves rapidly and exhibits great evolutionary plasticity. However, the presence of so-called piRNA clusters as the major source of piRNAs is common to nearly all metazoan species. These genomic piRNA-producing loci are highly divergent across taxa and critically influence piRNA populations in different evolutionary lineages. We launched the initial version of the piRNA cluster database to facilitate research on regulation and evolution of piRNA-producing loci across tissues und species. In recent years the amount of small RNA sequencing data that was generated and the abundance of species that were studied has grown rapidly. To keep up with this recent progress, we have released a major update for the piRNA cluster database (https://www.smallrnagroup.uni-mainz.de/piRNAclusterDB), expanding it from 12 to a total of 51 species with hundreds of new datasets, and revised its overall structure to enable easy navigation through this large amount of data.


Assuntos
Proteínas Argonautas/genética , Análise por Conglomerados , Bases de Dados Genéticas , Genoma , RNA Interferente Pequeno/genética , Software , Animais , Proteínas Argonautas/classificação , Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis , Conjuntos de Dados como Assunto , Evolução Molecular , Loci Gênicos , Humanos , Internet , Filogenia , RNA Interferente Pequeno/classificação , RNA Interferente Pequeno/metabolismo
4.
RNA ; 23(9): 1352-1364, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28630141

RESUMO

The majority of Drosophila genes are expressed in a temperature-dependent manner, but the way in which small RNAs may contribute to this effect is completely unknown as we currently lack an idea of how small RNA transcriptomes change as a function of temperature. Applying high-throughput sequencing techniques complemented by quantitative real-time PCR experiments, we demonstrate that altered ambient temperature induces drastic but reversible changes in sequence composition and total abundance of both miRNA and piRNA populations. Further, mRNA sequencing reveals that the expression of miRNAs and their predicted target transcripts correlates inversely, suggesting that temperature-responsive miRNAs drive adaptation to different ambient temperatures on the transcriptome level. Finally, we demonstrate that shifts in temperature affect both primary and secondary piRNA pools, and the observed aberrations are consistent with altered expression levels of the involved Piwi-pathway factors. We further reason that enhanced ping-pong processing at 29°C is driven by dissolved RNA secondary structures at higher temperatures, uncovering target sites that are not accessible at low temperatures. Together, our results show that small RNAs are an important part of epigenetic regulatory mechanisms that ensure homeostasis and adaptation under fluctuating environmental conditions.


Assuntos
Adaptação Biológica/genética , Drosophila/genética , MicroRNAs/genética , Temperatura , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , RNA Interferente Pequeno/genética , Transcriptoma
5.
BMC Genomics ; 18(1): 644, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830358

RESUMO

BACKGROUND: Next generation sequencing is a key technique in small RNA biology research that has led to the discovery of functionally different classes of small non-coding RNAs in the past years. However, reliable annotation of the extensive amounts of small non-coding RNA data produced by high-throughput sequencing is time-consuming and requires robust bioinformatics expertise. Moreover, existing tools have a number of shortcomings including a lack of sensitivity under certain conditions, limited number of supported species or detectable sub-classes of small RNAs. RESULTS: Here we introduce unitas, an out-of-the-box ready software for complete annotation of small RNA sequence datasets, supporting the wide range of species for which non-coding RNA reference sequences are available in the Ensembl databases (currently more than 800). unitas combines high quality annotation and numerous analysis features in a user-friendly manner. A complete annotation can be started with one simple shell command, making unitas particularly useful for researchers not having access to a bioinformatics facility. Noteworthy, the algorithms implemented in unitas are on par or even outperform comparable existing tools for small RNA annotation that map to publicly available ncRNA databases. CONCLUSIONS: unitas brings together annotation and analysis features that hitherto required the installation of numerous different bioinformatics tools which can pose a challenge for the non-expert user. With this, unitas overcomes the problem of read normalization. Moreover, the high quality of sequence annotation and analysis, paired with the ease of use, make unitas a valuable tool for researchers in all fields connected to small RNA biology.


Assuntos
Anotação de Sequência Molecular/métodos , Pequeno RNA não Traduzido/genética , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
6.
Nat Commun ; 14(1): 5336, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660134

RESUMO

DNA methylation at the CpG dinucleotide is considered a stable epigenetic mark due to its presumed long-term inheritance through clonal expansion. Here, we perform high-throughput bisulfite sequencing on clonally derived somatic cell lines to quantitatively measure methylation inheritance at the nucleotide level. We find that although DNA methylation is generally faithfully maintained at hypo- and hypermethylated sites, this is not the case at intermediately methylated CpGs. Low fidelity intermediate methylation is interspersed throughout the genome and within genes with no or low transcriptional activity, and is not coordinately maintained between neighbouring sites. We determine that the probabilistic changes that occur at intermediately methylated sites are likely due to DNMT1 rather than DNMT3A/3B activity. The observed lack of clonal inheritance at intermediately methylated sites challenges the current epigenetic inheritance model and has direct implications for both the functional relevance and general interpretability of DNA methylation as a stable epigenetic mark.


Assuntos
Metilação de DNA , Nucleotídeos , Sequência de Bases , Linhagem Celular , Epigênese Genética
7.
Genome Biol Evol ; 11(4): 1088-1104, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30888404

RESUMO

PIWI proteins and their guiding Piwi-interacting (pi-) RNAs direct the silencing of target nucleic acids in the animal germline and soma. Although in mammal testes fetal piRNAs are involved in extensive silencing of transposons, pachytene piRNAs have additionally been shown to act in post-transcriptional gene regulation. The bulk of pachytene piRNAs is produced from large genomic loci, named piRNA clusters. Recently, the presence of reversed pseudogenes within piRNA clusters prompted the idea that piRNAs derived from such sequences might direct regulation of their parent genes. Here, we examine primate piRNA clusters and integrated pseudogenes in a comparative approach to gain a deeper understanding about mammalian piRNA cluster evolution and the presumed gene-regulatory role of pseudogene-derived piRNAs. Initially, we provide a broad analysis of the evolutionary relationships of piRNA clusters and their differential activity among six primate species. Subsequently, we show that pseudogenes in reserve orientation relative to piRNA cluster transcription direction generally do not exhibit signs of selection pressure and cause weakly conserved targeting of homologous genes among species, suggesting a lack of functional constraints and thus only a minor significance for gene regulation in most cases. Finally, we report that piRNA-producing loci generally tend to be located in active genomic regions with elevated gene and pseudogene density. Thus, we conclude that the presence of most pseudogenes in piRNA clusters might be regarded as a byproduct of piRNA cluster generation, whereas this does not exclude that some pseudogenes nevertheless play critical roles in individual cases.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Primatas/genética , Pseudogenes , RNA Interferente Pequeno/genética , Adaptação Biológica , Animais , Primatas/metabolismo , RNA Interferente Pequeno/metabolismo
8.
Open Biol ; 9(5): 190020, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31138098

RESUMO

Codon composition, GC content and local RNA secondary structures can have a profound effect on gene expression, and mutations affecting these parameters, even though they do not alter the protein sequence, are not neutral in terms of selection. Although evidence exists that, in some cases, selection favours more stable RNA secondary structures, we currently lack a concrete idea of how many genes are affected within a species, and whether this is a universal phenomenon in nature. We searched for signs of structural selection in a global manner, analysing a set of 1 million coding sequences from 73 species representing all domains of life, as well as viruses, by means of our newly developed software PACKEIS. We show that codon composition and amino acid identity are main determinants of RNA secondary structure. In addition, we show that the arrangement of synonymous codons within coding sequences is non-random, yielding extremely high, but also extremely low, RNA structuredness significantly more often than expected by chance. Taken together, we demonstrate that selection for high and low levels of secondary structure is a widespread phenomenon. Our results provide another line of evidence that synonymous mutations are less neutral than commonly thought, which is of importance for many evolutionary models.


Assuntos
Biologia Computacional/métodos , Fases de Leitura Aberta , RNA/química , Composição de Bases , Uso do Códon , Conformação de Ácido Nucleico , Software
9.
Commun Biol ; 1: 137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272016

RESUMO

PIWI proteins and PIWI-interacting RNAs (piRNAs) suppress transposon activity in animals, thus protecting their genomes from detrimental insertion mutagenesis. Here, we reveal that PIWI genes and piRNAs are ubiquitously expressed in mollusks, similar to the situation in arthropods. We describe lineage-specific adaptations of transposon composition in piRNA clusters in the great pond snail and the pacific oyster, likely reflecting differential transposon activity in gastropods and bivalves. We further show that different piRNA clusters with unique transposon composition are dynamically expressed during oyster development. Finally, bioinformatics analyses suggest that different populations of piRNAs presumably bound to different PIWI paralogs participate in homotypic and heterotypic ping-pong amplification loops in a tissue- and sex-specific manner. Together with recent findings from other animal species, our results support the idea that somatic piRNA expression represents the ancestral state in metazoans.

10.
Wiley Interdiscip Rev RNA ; 6(6): 687-708, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26439796

RESUMO

Throughout the domains of life, transposon activity represents a serious threat to genome integrity and evolution has realized different molecular mechanisms that aim to inhibit the transposition of mobile DNA. Small noncoding RNAs that function as guides for Argonaute effector proteins represent a key feature of so-called RNA interference (RNAi) pathways and specialized RNAi pathways exist to repress transposon activity on the transcriptional and posttranscriptional level. Transposon transcription can be diminished by targeted DNA methylation or chromatin remodeling via repressive Histone modifications. Posttranscriptional transposon silencing bases on degradation of transposon transcripts to prevent either reverse transcription followed by genomic reintegration or translation into proteins that mediate the transposition process. In plants, Argonaute-like proteins guided by short interfering RNAs (siRNAs) are essential for transposon repression on the epigenetic and posttranscriptional level. In the germline of animals, these tasks are often assumed by a second subclass of Argonaute proteins referred to as Piwi-like proteins, which bind a distinct class of small noncoding RNAs named piwi-interacting RNAs (piRNAs). Though the principals of RNAi pathways are essentially the same in all eukaryotic organisms, remarkable differences can be observed even in closely related species reflecting the astonishing plasticity and diversity of these pathways.


Assuntos
Elementos de DNA Transponíveis/fisiologia , RNA/fisiologia , Animais , Humanos , Interferência de RNA
11.
PLoS One ; 10(5): e0124860, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25950437

RESUMO

Piwi-interacting (pi-) RNAs guide germline-expressed Piwi proteins in order to suppress the activity of transposable elements (TEs). But notably, the majority of pachytene piRNAs in mammalian testes is not related to TEs. This raises the question of whether the Piwi/piRNA pathway exerts functions beyond TE silencing. Although gene-derived piRNAs were described many times, a possible gene-regulatory function was doubted due to the absence of antisense piRNAs. Here we sequenced and analyzed piRNAs expressed in the adult testis of the pig, as this taxon possesses the full set of mammalian Piwi paralogs while their spermatozoa are marked by an extreme fitness due to selective breeding. We provide an exhaustive characterization of porcine piRNAs and genomic piRNA clusters. Moreover, we reveal that both sense and antisense piRNAs derive from protein-coding genes, while exhibiting features that clearly show that they originate from the Piwi/piRNA-mediated post-transcriptional silencing pathway, commonly referred to as ping-pong cycle. We further show that the majority of identified piRNA clusters in the porcine genome spans exonic sequences of protein-coding genes or pseudogenes, which reveals a mechanism by which primary antisense piRNAs directed against mRNA can be generated. Our data provide evidence that spliced mRNAs, derived from such loci, are not only targeted by piRNAs but are also subject to ping-pong cycle processing. Finally, we demonstrate that homologous genes are targeted and processed by piRNAs in pig, mouse and human. Altogether, this strongly suggests a conserved role for the mammalian Piwi/piRNA pathway in post-transcriptional regulation of protein-coding genes, which did not receive much attention so far.


Assuntos
Proteínas Argonautas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Testículo/metabolismo , Animais , Proteínas Argonautas/metabolismo , Sequência Conservada , Humanos , Masculino , Camundongos , Família Multigênica , Análise de Sequência de RNA , Transdução de Sinais , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA