RESUMO
Hypothyroidism has been shown to reduce infarct size in rats, but the underlying mechanisms are unclear. We used isolated pressure-constant perfused hearts of control, hypothyroid and hyperthyroid mice and measured infarct size, functional parameters and phosphorylation of key molecules in cardioprotective signaling with matched heart rate. Compared with controls, hypothyroidism was cardioprotective, while hyperthyroidism was detrimental with enlarged infarct size. Next, we asked how thyroid hormone receptor α (TRα) affects ischemia/reperfusion (IR) injury. Thus, canonical and noncanonical TRα signaling was investigated in the hearts of (i) mice lacking TRα (TRα0), (ii) with a mutation in TRα DNA-binding domain (TRαGS) and (iii) in hyperthyroid TRα0 (TRα0hyper) and TRαGS mice (TRαGShyper). TRα0 mouse hearts were protected against IR injury. Furthermore, infarct size was reduced in the hearts of TRαGS mice that lack canonical TRα signaling but maintain noncanonical TRα action. Hyperthyroidism did not increase infarct size in TRα0 and TRαGS mouse hearts. These cardioprotective effects were not associated with increased phosphorylation of key proteins of RISK, SAFE and eNOS pathways. In summary, chronic hypothyroidism and the lack of canonical TRα signaling are cardioprotective in IR injury and protection is not due to favorable changes in hemodynamics.
Assuntos
Hipertireoidismo , Hipotireoidismo , Traumatismo por Reperfusão , Ratos , Camundongos , Animais , Hipotireoidismo/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hipertireoidismo/metabolismo , Hemodinâmica , Traumatismo por Reperfusão/metabolismo , Infarto , Miocárdio/metabolismoRESUMO
Aberrant protein aggregation is a pathological cellular hallmark of many neurodegenerative diseases, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), where the tau protein is aggregating, forming neurofibrillary tangles (NFTs), and propagating from neuron to neuron. These processes have been linked to disease progression and a decline in cognitive function. Various therapeutic approaches aim at the prevention or reduction of tau aggregates in neurons. Human induced pluripotent stem cells (hiPSCs) are a very valuable tool in neuroscience discovery, as they offer access to potentially unlimited amounts of cell types that are affected in disease, including cortical neurons, for in vitro studies. We have generated an in vitro model for tau aggregation that uses hiPSC - derived neurons expressing an aggregation prone, fluorescently tagged version of the human tau protein after lentiviral transduction. Upon addition of tau seeds in the form of recombinant sonicated paired helical filaments (sPHFs), the neurons show robust, disease-like aggregation of the tau protein. The model was developed as a plate-based high content screening assay coupled with an image analysis algorithm to evaluate the impact of small molecules or genetic perturbations on tau. We show that the assay can be used to evaluate small molecules or screen targeted compound libraries. Using siRNA-based gene knockdown, genes of interest can be evaluated, and we could show that a targeted gene library can be screened, by screening nearly 100 deubiquitinating enzymes (DUBs) in that assay. The assay uses an imaging-based readout, a relatively short timeline, quantifies the extent of tau aggregation, and also allows the assessment of cell viability. Furthermore, it can be easily adapted to different hiPSC lines or neuronal subtypes. Taken together, this complex and highly relevant approach can be routinely applied on a weekly basis in the screening funnels of several projects and generates data with a turnaround time of approximately five weeks.
Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/metabolismo , Neurônios/metabolismoRESUMO
Background: Stimulation of ventricular hypertrophy and heart rate are two major cardiac effects of thyroid hormone (TH). The aim of this study was to determine in vivo which TH receptor (TR)-α or ß-and which mode of TR action-canonical gene expression or DNA-binding independent noncanonical action-mediate these effects. Methods: We compared global TRα and TRß knockout mice (TRαKO; TRßKO) with wild-type (WT) mice to determine the TR isoform responsible for T3 effects. The relevance of TR DNA binding was studied in mice with a mutation in the DNA-binding domain that selectively abrogates DNA binding and canonical TR action (TRαGS; TRßGS). Hearts were studied with echocardiography at baseline and after 7 weeks of T3 treatment. Gene expression was measured with real-time polymerase chain reaction. Heart rate was recorded with radiotelemetry transmitters for 7 weeks in untreated, hypothyroid, and T3-treated mice. Results: T3 induced ventricular hypertrophy in WT and TRßKO mice, but not in TRαKO mice. Hypertrophy was also induced in TRαGS mice. Thus, hypertrophy is mostly mediated by noncanonical TRα action. Similarly, repression of Mhy7 occurred in WT and TRαGS mice. Basal heart rate was largely dependent on canonical TRα action. But responsiveness to hypothyroidism and T3 treatment as well as expression of pacemaker gene Hcn2 were still preserved in TRαKO mice, demonstrating that TRß could compensate for absence of TRα. Conclusions: T3-induced cardiac hypertrophy could be attributed to noncanonical TRα action, whereas heart rate regulation was mediated by canonical TRα action. TRß could substitute for canonical but not noncanonical TRα action.
Assuntos
Cardiomegalia , Frequência Cardíaca , Camundongos Knockout , Receptores alfa dos Hormônios Tireóideos , Receptores beta dos Hormônios Tireóideos , Tri-Iodotironina , Animais , Masculino , Camundongos , Cardiomegalia/metabolismo , Cardiomegalia/genética , Hipotireoidismo/metabolismo , Hipotireoidismo/genética , Isoformas de Proteínas/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismoRESUMO
Thyroid hormone (TH) effects are mediated through TH receptors (TRs), TRα1, TRß1, and TRß2. The TRs bind to the DNA and regulate expression of TH target genes (canonical signaling). In addition, they mediate activation of signaling pathways (noncanonical signaling). Whether noncanonical TR action contributes to the spectrum of TH effects is largely unknown. The aim of this study was to attribute physiological effects to the TR isoforms and their canonical and noncanonical signaling. We conducted multiparameter phenotyping in male and female TR knockout mice (TRαKO, TRßKO), mice with disrupted canonical signaling due to mutations in the TR DNA binding domain (TRαGS, TRßGS), and their wild-type littermates. Perturbations in senses, especially hearing (mainly TRß with a lesser impact of TRα), visual acuity, retinal thickness (TRα and TRß), and in muscle metabolism (TRα) highlighted the role of canonical TR action. Strikingly, selective abrogation of canonical TR action often had little phenotypic consequence, suggesting that noncanonical TR action sufficed to maintain the wild-type phenotype for specific effects. For instance, macrocytic anemia, reduced retinal vascularization, or increased anxiety-related behavior were only observed in TRαKO but not TRαGS mice. Noncanonical TRα action improved energy utilization and prevented hyperphagia observed in female TRαKO mice. In summary, by examining the phenotypes of TRα and TRß knockout models alongside their DNA binding-deficient mutants and wild-type counterparts, we could establish that the noncanonical actions of TRα and TRß play a crucial role in modulating sensory, behavioral, and metabolic functions and, thus, contribute to the spectrum of physiological TH effects.
Assuntos
Camundongos Knockout , Fenótipo , Receptores alfa dos Hormônios Tireóideos , Receptores beta dos Hormônios Tireóideos , Animais , Feminino , Masculino , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Camundongos , Transdução de Sinais/genética , Hormônios Tireóideos/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Tau protein fibrillization is implicated in the pathogenesis of several neurodegenerative diseases collectively known as Tauopathies. For decades, investigating Tau fibrillization in vitro has required the addition of polyanions or other co-factors to induce its misfolding and aggregation, with heparin being the most commonly used. However, heparin-induced Tau fibrils exhibit high morphological heterogeneity and a striking structural divergence from Tau fibrils isolated from Tauopathies patients' brains at ultra- and macro-structural levels. To address these limitations, we developed a quick, cheap, and effective method for producing completely co-factor-free fibrils from all full-length Tau isoforms and mixtures thereof. We show that Tau fibrils generated using this ClearTau method - ClearTau fibrils - exhibit amyloid-like features, possess seeding activity in biosensor cells and hiPSC-derived neurons, retain RNA-binding capacity, and have morphological properties and structures more reminiscent of the properties of the brain-derived Tau fibrils. We present the proof-of-concept implementation of the ClearTau platform for screening Tau aggregation-modifying compounds. We demonstrate that these advances open opportunities to investigate the pathophysiology of disease-relevant Tau aggregates and will facilitate the development of Tau pathology-targeting and modifying therapies and PET tracers that can distinguish between different Tauopathies.
Assuntos
Agregação Patológica de Proteínas , Proteínas tau , Proteínas tau/química , Heparina/química , Humanos , Linhagem Celular , Técnicas Biossensoriais , Células-Tronco Pluripotentes , Neurônios , Isoformas de Proteínas , Microscopia CrioeletrônicaRESUMO
CONTEXT: Hypothyroidism impairs cardiovascular health and contributes to endothelial dysfunction with reduced vasodilation. How 3,5,3'-triiodothyronine (T3) and its receptors are involved in the regulation of vasomotion is not yet fully understood. In general, thyroid hormone receptors (TRs) either influence gene expression (canonical action) or rapidly activate intracellular signaling pathways (noncanonical action). OBJECTIVE: Here we aimed to characterize the T3 action underlying the mechanism of arterial vasodilation and blood pressure (BP) regulation. METHODS: Mesenteric arteries were isolated from male rats, wild-type (WT) mice, TRα knockout (TRαâ0) mice, and from knockin mice with a mutation in the DNA-binding domain (TRαâGS). In this mutant, DNA binding and thus canonical action is abrogated while noncanonical signaling is preserved. In a wire myograph system, the isolated vessels were preconstricted with norepinephrine. The response to T3 was measured, and the resulting vasodilation (Δ force [mN]) was normalized to maximum contraction with norepinephrine and expressed as percentage vasodilation after maximal preconstriction with norepinephrine (%NE). Isolated vessels were treated with T3 (1â ×â 10-15 to 1â ×â 10-5 mol/L) alone and in combination with the endothelial nitric oxide-synthase (eNOS) inhibitor L-NG-nitroarginine methyl ester (L-NAME) or the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. The endothelium was removed to determine the contribution of T3 to endothelium-dependent vasodilation. The physiological relevance of T3-induced vasodilation was determined by in vivo arterial BP measurements in male and female mice. RESULTS: T3 treatment induced vasodilation of mesenteric arteries from WT mice within 2 minutes (by 21.5â ±â 1.7%NE). This effect was absent in arteries from TRαâ0 mice (by 5.3â ±â 0.6%NE, Pâ <â .001 vs WT) but preserved in TRαâGS arteries (by 17.2â ±â 1.1%NE, not significant vs WT). Inhibition of either eNOS or PI3K reduced T3-mediated vasodilation from 52.7â ±â 4.5%NE to 28.5â ±â 4.1%NE and 22.7â ±â 2.9%NE, respectively. Removal of the endothelium abolished the T3-mediated vasodilation in rat mesenteric arteries (by 36.7â ±â 5.4%NE vs 3.5â ±â 6.2%NE). In vivo, T3 injection led to a rapid decrease of arterial BP in WT (by 13.9â ±â 1.9 mm Hg) and TRαâGS mice (by 12.4â ±â 1.9 mm Hg), but not in TRαâ0 mice (by 4.1â ±â 1.9 mm Hg). CONCLUSION: These results demonstrate that T3 acting through noncanonical TRα action affects cardiovascular physiology by inducing endothelium-dependent vasodilation within minutes via PI3K and eNOS activation.
Assuntos
Artérias Mesentéricas/fisiologia , Receptores alfa dos Hormônios Tireóideos/fisiologia , Vasodilatação/fisiologia , Animais , Sítios de Ligação/genética , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , DNA/metabolismo , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Knockout , Mutação , Óxido Nítrico Sintase Tipo III/fisiologia , Norepinefrina/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Ratos , Transdução de Sinais/fisiologia , Receptores alfa dos Hormônios Tireóideos/química , Receptores alfa dos Hormônios Tireóideos/genética , Tri-Iodotironina/farmacologia , Vasodilatação/efeitos dos fármacosRESUMO
Thyroid hormone (TH) is essential for the regulation of many physiological processes, especially growth, organ development, energy metabolism and cardiovascular effects. TH acts via the TH receptors (TR) α and ß. By binding to thyroid hormone responsive elements (TREs) on the DNA, TRs regulate expression of TH target genes. Thus, TRs are mainly characterized as ligand dependent transcription factors and regulation of gene expression and protein synthesis is considered the canonical mode of TH/TR action. The demonstration that the ligand-bound TRs α and ß also mediate activation of the phosphatidylinositol-3-kinase (PI3K) pathway established noncanonical TH/TR action as an additional mode of TH signaling. Recently, TR mutant mouse models allowed to determine the underlying mode of TH/TR action, either canonical or noncanonical TH/TR signaling, for several physiological TH effects in vivo: Regulation of the hypothalamic-pituitary-thyroid axis requires DNA-binding of TRß, whereas hepatic triglyceride content appears to be regulated by noncanonical TRß signaling. TRα mediated effects in bone development are dependent on DNA-binding, whereas several cardiovascular TRα effects are rapid and independent from DNA-binding. Therefore, noncanonical TH/TR action contributes to the overall effects of TH in physiology.