Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 26(62): 14090-14094, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32519788

RESUMO

Transfer hydrogenation reactions are of great interest to reduce diverse molecules under mild reaction conditions. To date, this type of reaction has only been successfully applied to alkenes, alkynes and polarized unsaturated compounds such as ketones, imines, pyridines, etc. The reduction of benzene derivatives by transfer hydrogenation has never been described, which is likely due to the high energy barrier required to dearomatize these compounds. In this context, we have developed a catalytic transfer hydrogenation reaction for the reduction of benzene derivatives and heteroarenes to form complex 3-dimensional scaffolds bearing various functional groups at room temperature without needing compressed hydrogen gas.

2.
Angew Chem Int Ed Engl ; 59(22): 8491-8496, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32112662

RESUMO

An efficient enantioselective construction of tetrahydronaphthalene-1,4-diones as well as dihydronaphthalene-1,4-diols by a chiral phosphoric acid catalyzed quinone Diels-Alder reaction with dienecarbamates is reported. The nature of the protecting group on the diene is key to the success of achieving high enantioselectivity. The divergent "redox" selectivity is controlled by using an adequate amount of quinones. Reversible redox switching without erosion of enantioselectivity was possible from individual redox isomers.

3.
Angew Chem Int Ed Engl ; 57(37): 12121-12125, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006960

RESUMO

A highly enantio- and diastereoselective formal (4+3) cycloaddition of 1,3-diene-1-carbamates with 3-indolylmethanols in the presence of a chiral phosphoric acid catalyst is reported. The approach described herein provides efficient access to 6-aminotetrahydrocyclohepta[b]indoles in good yields with mostly complete diastereoselectivity and excellent levels of enantioselectivity (>98:2 dr and up to 98 % ee). Mild reaction conditions, facile scale-up, and versatile derivatization highlight the practicality of this methodology. A mechanistic study suggests that cycloaddition occurs in a stepwise fashion, after the formation of an ion pair between the chiral catalytic phosphate and the intermediate carbocation.

4.
Org Lett ; 23(2): 442-448, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33404248

RESUMO

Highly enantio- and regioselective (3 + 2) formal cycloaddition of ß-substituted ene- and thioenecarbamates as well as cyclic enamides with quinone diimides catalyzed by a BINOL- and SPINOL-derived phosphoric acid is reported. A wide variety of 2,3-disubstituted 2-aminoindolines, including polycyclic ones, were prepared in generally high yields (up to 98%) with moderate to complete diastereoselectivities and in most cases excellent enantioselectivities (up to 99% ee).

5.
Org Lett ; 19(1): 278-281, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28009522

RESUMO

An efficient enantioselective hypervalent iodine promoted oxylactonization of 4-pentenoic acids has been achieved using stoichiometric or a catalytic amount of chiral aryl-λ3-iodane. This reaction provides straightforward access to a wide range of sulfonyloxy- and phosphoryloxy-γ-butyrolactones in respectable yields with moderate to excellent enantioselectivities.

6.
Org Lett ; 18(14): 3422-5, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27352020

RESUMO

Asymmetric [3 + 2] cycloaddition of quinones with ene- and thioene-carbamates was achieved by chiral phosphoric acid catalysis, providing the corresponding 3-amino-2,3-dihydrobenzofurans in excellent yields with moderate to good diastereoselectivities and excellent enantioselectivities. An asymmetric tandem oxidative cycloaddition protocol starting from hydroquinones was also accomplished with phenyliodine(III) diacetate and a chiral phosphoric acid in the same reaction vessel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA