Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 20: 100038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33515807

RESUMO

Sporozoites are a motile form of malaria-causing Plasmodium falciparum parasites that migrate from the site of transmission in the dermis through the bloodstream to invade hepatocytes. Sporozoites interact with many cells within the host, but the molecular identity of these interactions and their role in the pathology of malaria is poorly understood. Parasite proteins that are secreted and embedded within membranes are known to be important for these interactions, but our understanding of how they interact with each other to form functional complexes is largely unknown. Here, we compile a library of recombinant proteins representing the repertoire of cell surface and secreted proteins from the P. falciparum sporozoite and use an assay designed to detect extracellular interactions to systematically identify complexes. We identify three protein complexes including an interaction between two components of the p24 complex that is involved in the trafficking of glycosylphosphatidylinositol-anchored proteins through the secretory pathway. Plasmodium parasites lacking either gene are strongly inhibited in the establishment of liver-stage infections. These findings reveal an important role for the p24 complex in malaria pathogenesis and show that the library of recombinant proteins represents a valuable resource to investigate P. falciparum sporozoite biology.


Assuntos
Interações Hospedeiro-Parasita , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Feminino , Malária/parasitologia , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados , Fenótipo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/fisiologia , Mapas de Interação de Proteínas , Proteínas de Protozoários/genética , Proteínas Recombinantes/metabolismo , Esporozoítos/fisiologia
2.
Sci Rep ; 7(1): 17680, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247222

RESUMO

Eradication of malaria requires a novel type of drug that blocks transmission from the human to the mosquito host, but selection of such a drug is hampered by a lack of translational models. Experimental mosquito infections yield infection intensities that are substantially higher than observed in natural infections and, as a consequence, underestimate the drug effect on the proportion of mosquitoes that become infected. Here we introduce a novel experimental and computational method to adequately describe drug efficacy at natural parasite densities. Parameters of a beta-binomial infection model were established and validated using a large number of experimental mosquito infections at different parasite densities. Analyses of 15 experimental and marketed drugs revealed a class-specific ability to block parasite transmission. Our results highlight the parasite's elongation factor EF2, PI4 kinase and the ATP4 sodium channel as key targets for interruption of transmission, and compounds DDD107498 and KAE609 as most advanced drug candidates.


Assuntos
Antiparasitários/farmacologia , Culicidae/efeitos dos fármacos , Malária Falciparum/transmissão , Parasitos/efeitos dos fármacos , Animais , Culicidae/metabolismo , Parasitos/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Canais de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA