Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2302756120, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549272

RESUMO

The mutual coupling of spin and lattice degrees of freedom is ubiquitous in magnetic materials and potentially creates exotic magnetic states in response to the external magnetic field. Particularly, geometrically frustrated magnets serve as a fertile playground for realizing magnetic superstructure phases. Here, we observe an unconventional two-step magnetostructural transition prior to a half-magnetization plateau in a breathing pyrochlore chromium spinel by means of state-of-the-art magnetization and magnetostriction measurements in ultrahigh magnetic fields available up to 600 T. Considering a microscopic magnetoelastic theory, the intermediate-field phase can be assigned to a magnetic superstructure with a three-dimensional periodic array of 3-up-1-down and canted 2-up-2-down spin molecules. We attribute the emergence of the magnetic superstructure to a unique combination of the strong spin-lattice coupling and large breathing anisotropy.

2.
Adv Sci (Weinh) ; 10(29): e2302839, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37596717

RESUMO

An anomalously high valence state sometimes shows up in transition-metal oxide compounds. In such systems, holes tend to occupy mainly the ligand p orbitals, giving rise to interesting physical properties such as superconductivity in cuprates and rich magnetic phases in ferrates. However, no one has ever observed the distribution of ligand holes in real space. Here, a successful observation of the spatial distribution of valence electrons in cubic perovskite SrFeO3 by high-energy X-ray diffraction experiments and precise electron density analysis using a core differential Fourier synthesis method is reported. A real-space picture of ligand holes formed by the orbital hybridization of Fe 3d and O 2p is revealed. The anomalous valence state in Fe is attributed to the considerable contribution of the ligand hole, which is related to the metallic nature and the absence of Jahn-Teller distortions in this system.

3.
Nat Commun ; 14(1): 1260, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898999

RESUMO

Bose-Einstein condensation (BEC) in quantum magnets, where bosonic spin excitations condense into ordered ground states, is a realization of BEC in a thermodynamic limit. Although previous magnetic BEC studies have focused on magnets with small spins of S ≤ 1, larger spin systems potentially possess richer physics because of the multiple excitations on a single site level. Here, we show the evolution of the magnetic phase diagram of S = 3/2 quantum magnet Ba2CoGe2O7 when the averaged interaction J is controlled by a dilution of magnetic sites. By partial substitution of Co with nonmagnetic Zn, the magnetic order dome transforms into a double dome structure, which can be explained by three kinds of magnetic BECs with distinct excitations. Furthermore, we show the importance of the randomness effects induced by the quenched disorder: we discuss the relevance of geometrical percolation and Bose/Mott glass physics near the BEC quantum critical point.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA