Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Genet ; 56(3): 541-552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361034

RESUMO

Mutational signature analysis is a recent computational approach for interpreting somatic mutations in the genome. Its application to cancer data has enhanced our understanding of mutational forces driving tumorigenesis and demonstrated its potential to inform prognosis and treatment decisions. However, methodological challenges remain for discovering new signatures and assigning proper weights to existing signatures, thereby hindering broader clinical applications. Here we present Mutational Signature Calculator (MuSiCal), a rigorous analytical framework with algorithms that solve major problems in the standard workflow. Our simulation studies demonstrate that MuSiCal outperforms state-of-the-art algorithms for both signature discovery and assignment. By reanalyzing more than 2,700 cancer genomes, we provide an improved catalog of signatures and their assignments, discover nine indel signatures absent in the current catalog, resolve long-standing issues with the ambiguous 'flat' signatures and give insights into signatures with unknown etiologies. We expect MuSiCal and the improved catalog to be a step towards establishing best practices for mutational signature analysis.


Assuntos
Música , Neoplasias , Humanos , Neoplasias/genética , Mutação , Carcinogênese/genética , Mutação INDEL
2.
J Neural Eng ; 18(5)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33770777

RESUMO

Objective.Automatic detection of interictal epileptiform discharges (IEDs, short as 'spikes') from an epileptic brain can help predict seizure recurrence and support the diagnosis of epilepsy. Developing fast, reliable and robust detection methods for IEDs based on scalp or intracranial electroencephalogram (iEEG) may facilitate online seizure monitoring and closed-loop neurostimulation.Approach.We developed a new deep learning approach, which employs a long short-term memory network architecture ('IEDnet') and an auxiliary classifier generative adversarial network (AC-GAN), to train on both expert-annotated and augmented spike events from iEEG recordings of epilepsy patients. We validated our IEDnet with two real-world iEEG datasets, and compared IEDnet with the support vector machine (SVM) and random forest (RF) classifiers on their detection performances.Main results.IEDnet achieved excellent cross-validated detection performances in terms of both sensitivity and specificity, and outperformed SVM and RF. Synthetic spike samples augmented by AC-GAN further improved the detection performance. In addition, the performance of IEDnet was robust with respect to the sampling frequency and noise. Furthermore, we demonstrated the cross-institutional generalization ability of IEDnet while testing between two datasets.Significance.IEDnet achieves excellent detection performances in identifying interictal spikes. AC-GAN can produce augmented iEEG samples to improve supervised deep learning.


Assuntos
Aprendizado Profundo , Epilepsia , Encéfalo , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Humanos , Couro Cabeludo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA