Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Liposome Res ; 33(2): 197-213, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36440599

RESUMO

Treatment of epithelial ovarian cancer (EOC) is a challenge because it still leads to unsatisfactory clinical prognosis. This is due to the toxicity and poor targeting of chemotherapeutic agents, as well as metastasis of the tumor. In this study, we designed a targeted liposome with nanostructures to overcome these problems. In the liposomes, epirubicin and curcumin were encapsulated to achieve their synergistic antitumor efficacy, while Epi-1 was modified on the liposomal surface to target epithelial cell adhesion molecule (EpCAM). Epi-1, a macrocyclic peptide, exhibits active targeting for enhanced cellular uptake and potent cytotoxicity against tumor cells. The encapsulation of epirubicin and curcumin synergistically inhibited the formation of neovascularization and vasculogenic mimicry (VM) channels, thereby suppressing tumor metastasis on SKOV3 cells. The dual drug loaded Epi-1-liposomes also induced apoptosis and downregulated metastasis-related proteins for effective antitumor in vitro. In vivo studies showed that dual drug loaded Epi-1-liposomes prolonged circulation time in the blood and increased the selective accumulation of drug at the tumor site. H&E staining and immunohistochemistry with Ki-67 also showed that targeted liposomes elevated antitumor activity. Also, targeted liposomes downregulated angiogenesis-related proteins to inhibit angiogenesis and thus tumor metastasis. In conclusion, the production of dual drug loaded Epi-1-liposomes is an effective strategy for the treatment of EOC.


Assuntos
Curcumina , Neoplasias Ovarianas , Humanos , Feminino , Epirubicina/farmacologia , Epirubicina/química , Epirubicina/uso terapêutico , Lipossomos/química , Molécula de Adesão da Célula Epitelial , Curcumina/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico
2.
Biomater Sci ; 10(2): 499-513, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34904598

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial joint hyperplasia, joint inflammation, cartilage erosion and bone destruction. Macrophages play an essential role in the pathogenesis of RA, and folate receptor ß (FR-ß) is highly expressed on the surface of activated synovial macrophages in RA patients. Triptolide (TP) has anti-inflammatory properties, and it can protect the cartilage matrix, but its clinical application has been limited due to poor solubility, low bioavailability and systemic toxicity. Therefore, we constructed folate-modified triptolide liposomes (FA-TP-Lips) to target macrophages, thereby treating RA in a safe and effective way. The experiments indicated that FA-TP-Lips had properties of small particle size, uniform particle size distribution, high drug encapsulation and long circulation. Furthermore, FA-TP-Lips showed reduced cytotoxicity, increased cellular uptake and significant anti-inflammatory effects in vitro. It also inhibited osteoclastogenesis. In vivo experiments revealed that liposomes could prolong the circulation of TP in the body, as well as exhibit significant cartilage-protective and anti-inflammatory effects with lower toxicity compared with the free TP group, thereby providing a promising new approach for the treatment of RA.


Assuntos
Artrite Reumatoide , Lipossomos , Artrite Reumatoide/tratamento farmacológico , Diterpenos , Compostos de Epóxi , Ácido Fólico , Humanos , Macrófagos , Fenantrenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA