Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Virus Genes ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235696

RESUMO

Atopic dermatitis (AD) is accompanied by changes in skin microbiota, in which abnormal colonization of Staphylococcus aureus is particularly common. The antibiotic treatment is prone to destroy the commensal bacterial community, further exacerbating the microbiome dysbiosis. Elimination of S. aureus through phage-targeted therapies presents a promising method in the treatment strategy of AD. In this study, we isolated a novel phage SAP71, which specifically lysed S. aureus. Genome sequencing showed that SAP71 contained no virulence, lysogenic, or antimicrobial resistance genes, making this lytic phage a potential agent for phage therapy. Moreover, we demonstrated that phage SAP71 was able to significantly improve the skin lesions, reduce the bacterial loads in the skin, and prevent the development of AD-like skin pathological changes in an AD model. In short, phage SAP71 was demonstrated to effectively treat S. aureus infection in AD, which provided a theoretical basis for the clinical phage therapy of AD.

2.
Eur J Clin Microbiol Infect Dis ; 42(1): 23-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36322255

RESUMO

Carbapenem-resistant Klebsiella pneumoniae are distributed worldwide. This study aimed to characterize a hypervirulent tigecycline-resistant and carbapenem-resistant Klebsiella pneumoniae strain, XJ-K2, collected from a patient's blood. We tested antimicrobial susceptibility, virulence, and whole-genome sequencing (WGS) on strain XJ-K2. WGS data were used to identify virulence and resistance genes and to perform multilocus sequence typing (MLST) and phylogenetic analysis. Three novel plasmids, including a pLVPK-like virulence plasmid (pXJ-K2-p1) and two multiple resistance plasmids (pXJ-K2-KPC-2 and pXJ-K2-p3), were discovered in strain XJ-K2. The IncFII(pCRY) plasmid pXJ-K2-p3 carried the dfrA14, sul2, qnrS1, blaLAP-2, and tet(A) resistance genes. The IncFII(pHN7A8)/IncR plasmid pXJ-K2-KPC-2 also carried a range of resistance elements, containing rmtB, blaKPC-2, blaTEM-1, blaCTX-M-65, and fosA3. MLST analysis revealed that strain XJ-K2 belonged to sequence type 11 (ST11). Seven complete phage sequences and many virulence genes were found in strain XJ-K2. Meanwhile, antimicrobial susceptibility tests and G. mellonella larval infection models confirmed the extensively drug resistance (XDR) and hypervirulence of KJ-K2. To our knowledge, this is the first observation and description of the ST11 hypervirulent tigecycline- and carbapenem-resistant K. pneumoniae strain co-carrying blaKPC-2 and the tet(A) in a patient's blood in China. Further investigation is needed to understand the resistance and virulence mechanisms of this significant hypervirulent tigecycline- and carbapenem-resistant strain.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Tigeciclina/farmacologia , Klebsiella pneumoniae , Antibacterianos/farmacologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Tipagem de Sequências Multilocus , Filogenia , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Plasmídeos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética
3.
Virus Genes ; 59(5): 763-774, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37422898

RESUMO

Enterococcus faecium has been classified as a "high priority" pathogen by the World Health Organization. Enterococcus faecium has rapidly evolved as a global nosocomial pathogen with adaptation to the nosocomial environment and the accumulation of resistance to multiple antibiotics. Phage therapy is considered a promising strategy against difficult-to-treat infections and antimicrobial resistance. In this study, we isolated and characterized a novel virulent bacteriophage, vB_Efm_LG62, that specifically infects multidrug-resistant E. faecium. Morphological observations suggested that the phage has siphovirus morphology, with an optimal multiplicity of infection of 0.001. One-step growth tests revealed that its latent growth was at 20 min, with a burst size of 101 PFU/cell. Phage vB_Efm_LG62 was verified to have a double-stranded genome of 42,236 bp (35.21% GC content), containing 66 predicted coding sequences as determined by whole genomic sequencing. No genes were predicted to have functions associated with virulence factors or antibiotic resistance, indicating that the phage vB_Efm_LG62 has good therapeutic potential. Our isolation and characterization of this highly efficient phage aids in expanding our knowledge of E. faecium-targeting phages, and provides additional options for phage cocktail therapy.


Assuntos
Bacteriófagos , Infecção Hospitalar , Enterococcus faecium , Humanos , Enterococcus faecium/genética , Genoma Viral , Sequenciamento Completo do Genoma , Infecção Hospitalar/genética
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 583-587, 2024 Apr.
Artigo em Zh | MEDLINE | ID: mdl-38660870

RESUMO

OBJECTIVE: To investigate distribution and drug resistance of pathogens of bloodstream infection in patients with hematological malignancies, in order to provide reference for clinical infection control and treatment. METHODS: The clinical information of blood culture patients in the hematology department of our hospital from January 2016 to December 2021 was reviewed. They were divided into transplantation group and non-transplantation group according to whether they had undergone hematopoietic stem cell transplantation. The types of pathogens and their drug resistance were analyzed. RESULTS: Two hundred and ninety-nine positive strains of pathogenic bacteria were detected. In the transplantation group, Gram-negative bacteria accounted for 68.5% (50/73), Gram-positive bacteria accounted for 6.8% (5/73), and fungi accounted for 24.7% (18/73). The resistance rate of Escherichia coli to the third-generation cephalosporins was 77.8%, and 11.5% to carbapenems. The resistance rate of Klebsiella pneumoniae to the third-generation cephalosporins was 50.0%, and 56.2% to carbapenems. In the non-transplantation group, Gram-negative bacteria accounted for 64.1% (145/226), Gram-positive bacteria accounted for 31.0% (70/226), and fungi accounted for 4.9% (11/226). Gram-positive bacteria were mainly Enterococcus faecium (6.6%, 15/226) and Coagulase-negative Staphylococci (6.2%, 14/226). The fungi were all Candida tropicalis. The resistance rate of Escherichia coli to the third-generation cephalosporins was 63.8%, and 10.3% to carbapenems. The resistance rate of Klebsiella pneumoniae to the third-generation cephalosporins was 46.3%, and 26.8% to carbapenems. CONCLUSION: The types of pathogenic bacteria in bloodstream infection in patients with hematological malignancies are varied. Gram-negative bacteria is the main pathogenic bacteria. The resistance of pathogenic bacteria to antibiotics is severe. Antibiotics should be used scientifically and reasonably according to the detection and resistance of pathogenic bacteria.


Assuntos
Antibacterianos , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/complicações , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Klebsiella pneumoniae/isolamento & purificação , Carbapenêmicos/farmacologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Cefalosporinas/farmacologia , Bacteriemia/microbiologia , Fungos
5.
Front Cell Infect Microbiol ; 14: 1301089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435308

RESUMO

Bacteriophages (phages) represent promising alternative treatments against multidrug-resistant Acinetobacter baumannii (MDRAB) infections. The application of phages as antibacterial agents is limited by their generally narrow host ranges, so changing or expanding the host ranges of phages is beneficial for phage therapy. Multiple studies have identified that phage tail fiber protein mediates the recognition and binding to the host as receptor binding protein in phage infection. However, the tail tubular-dependent host specificity of phages has not been studied well. In this study, we isolated and characterized a novel lytic phage, vB_Ab4_Hep4, specifically infecting MDRAB strains. Meanwhile, we identified a spontaneous mutant of the phage, vB_Ab4_Hep4-M, which revealed an expanded host range compared to the wild-type phage. A single mutation of G to C was detected in the gene encoding the phage tail tubular protein B and thus resulted in an aspartate to histidine change. We further demonstrated that the host range expansion of the phage mutant is driven by the spontaneous mutation of guanine to cytosine using expressed tail tubular protein B. Moreover, we established that the bacterial capsule is the receptor for phage Abp4 and Abp4-M by identifying mutant genes in phage-resistant strains. In conclusion, our study provided a detailed description of phage vB_Ab4_Hep4 and revealed the tail tubular-dependent host specificity in A. baumannii phages, which may provide new insights into extending the host ranges of phages by gene-modifying tail tubular proteins.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Mutação , Acinetobacter baumannii/genética , Antibacterianos , Bacteriófagos/genética , Especificidade de Hospedeiro
6.
Microbiol Spectr ; 11(3): e0438422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37022197

RESUMO

The spread of multidrug resistant and hypervirulent Klebsiella pneumoniae has recently increased. Phages have been considered alternatives for treating infections caused by tenacious pathogens. Our study describes a novel lytic Klebsiella phage, hvKpP3, and we obtained spontaneous mutants, hvKpP3R and hvKpP3R15, of hvKpLS8 strain that showing strong resistance to the lytic phage hvKpP3. Sequencing analysis showed that nucleotide-deletion mutations of the glycosyltransferase gene (GT) and wcaJ genes, located in the lipopolysaccharide (LPS) gene cluster and the capsular polysaccharide (CPS) gene cluster, respectively, led to phage resistance. The wcaJ mutation confers the inhibition of phage adsorption by affecting the synthesis of hvKpP3R15 capsular polysaccharide, indicating that the capsule is the main adsorption receptor for bacteriophage hvKpP3. Interestingly, the phage-resistant mutant hvKpP3R has a loss-of-function mutation in GT, which is responsible for lipopolysaccharide biosynthesis. This results in the loss of high-molecular weight lipopolysaccharide (HMW-LPS), and alteration of the lipopolysaccharide structure of the bacterial cell wall confers resistance to phages. In conclusion, our study provides a detailed description of phage hvKpP3 and provides new insights into phage resistance in K. pneumoniae. IMPORTANCE Multidrug-resistant (MDR) Klebsiella pneumoniae strains pose a particular threat to human health. Therefore, it is very important for us to isolate phage and overcome phage resistance. In this study, we isolated a novel phage belonging to the Myoviridae family, hvKpP3, that exhibited high lytic activity against K2 hypervirulent K. pneumoniae. We demonstrated the excellent stability of phage hvKpP3 through in vitro and in vivo experiments, indicating its potential as a candidate for future clinical phage therapy. Furthermore, we identified that loss of function in the glycotransferase gene (GT) caused the failure of HMW-LPS synthesis, leading to phage resistance, which provides new insights into phage resistance in K. pneumoniae.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Humanos , Bacteriófagos/fisiologia , Lipopolissacarídeos , Klebsiella pneumoniae , Peso Molecular , Myoviridae , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA