Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 21(9): 546-559, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38957999

RESUMO

Goats are often asymptomatic carriers of Campylobacter, including the foodborne pathogen Campylobacter jejuni. Infections can have significant and economically detrimental health outcomes in both humans and animals. The primary objective of this study was to estimate the prevalence of Campylobacter in U.S. goat herds. Campylobacter species were isolated from 106 of 3,959 individual animals and from 42 of 277 goat operations that participated in fecal sample collection as part of the National Animal Health Monitoring System Goat 2019 study. Weighted animal-level prevalence was 2.3% (SE = 0.5%) and operation prevalence was 13.0% (SE = 3.2%). Animal-level prevalence ranged widely from 0 to 70.0%, however, 52.4% of positive operations (22/42) had only a single isolate. C. jejuni was the most frequently isolated species (68.9%; 73/106), followed by C. coli (29.3%, 31/106). A total of 46.2% (36/78) of viable isolates were pan-susceptible to 8 antimicrobials. Resistance to tetracycline (TET) was observed in 44.9% (35/78) of isolates, while 12.8% (10/78) were resistant to ciprofloxacin (CIP) and nalidixic acid (NAL). Among all isolates, a single resistance profile CIP-NAL-TET was observed in 3.8% (3/78) of isolates. A total of 35 unique sequence types (STs) were identified, 11 of which are potentially new. Multiple C. jejuni STs were observed in 48.1% (13/27) of positive operations. Goats with access to surface water, operations reporting antibiotics in the feed or water (excluding ionophores and coccidiostats), and operations reporting abortions and without postabortion management tasks had significantly greater odds of being Campylobacter positive. This snapshot of the U.S. goat population enriches the limited pool of knowledge on Campylobacter species presence in U.S. goats.


Assuntos
Antibacterianos , Infecções por Campylobacter , Campylobacter , Fezes , Doenças das Cabras , Cabras , Animais , Fezes/microbiologia , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/epidemiologia , Estados Unidos/epidemiologia , Prevalência , Campylobacter/efeitos dos fármacos , Campylobacter/isolamento & purificação , Campylobacter/classificação , Antibacterianos/farmacologia , Doenças das Cabras/microbiologia , Doenças das Cabras/epidemiologia , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/isolamento & purificação , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
2.
Foodborne Pathog Dis ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38502797

RESUMO

Escherichia coli and Enterococcus species are normal bacteria of the gastrointestinal tract and serve as indicator organisms for the epidemiology and emergence of antimicrobial resistance in their hosts and the environment. Some E. coli serovars, including E. coli O157:H7, are important human pathogens, although reservoir species such as goats remain asymptomatic. We describe the prevalence and antimicrobial resistance of generic E. coli, E. coli O157:H7, and Enterococcus species collected from a national surveillance study of goat feces as part of the National Animal Health Monitoring System (NAHMS) Goat 2019 study. Fecal samples were collected from 4918 goats on 332 operations across the United States. Expectedly, a high prevalence of E. coli (98.7%, 4850/4915) and Enterococcus species (94.8%, 4662/4918) was found. E. coli O157:H7 prevalence was low (0.2%; 10/4918). E. coli isolates, up to three per operation, were evaluated for antimicrobial susceptibility and 84.7% (571/674) were pansusceptible. Multidrug resistance (MDR; ≥3 classes) was uncommon among E. coli, occurring in 8.2% of isolates (55/674). Resistance toward seven antimicrobial classes was observed in a single isolate. Resistance to tetracycline alone (13.6%, 92/674) or to tetracycline, streptomycin, and sulfisoxazole (7.0% 47/674) was the most common pattern. All E. coli O157:H7 isolates were pansusceptible. Enterococcus isolates, up to four per operation, were prioritized by public health importance, including Enterococcus faecium and Enterococcus faecalis and evaluated. Resistance to lincomycin (93.8%, 1232/1313) was most common, with MDR detected in 29.5% (388/1313) of isolates. The combination of ciprofloxacin, lincomycin, and quinupristin resistance (27.1%, 105/388) was the most common pattern detected. Distribution and characteristics of antimicrobial resistance in E. coli and Enterococcus in the U.S. goat population from this study can inform stewardship considerations and public health efforts surrounding goats and their products.

3.
J Food Prot ; : 100385, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39427815

RESUMO

Recent studies on the use of plant-derived and other bioactive compounds and antimicrobials in food have challenged the idea that exposure to antimicrobials at sub-lethal or subinhibitory concentrations (SIC) increases the virulence potential of bacterial pathogens including Listeria monocytogenes. The objective of this study was to determine the effect of exposure to SICs of Ɛ -polylysine (EPL), hydrogen peroxide (HP), and lauric arginate (LAE) on L. monocytogenes virulence. For all assays, L. monocytogenes strains Scott A and 2014L-6025 were grown to mid-log phase in the presence of SICs of EPL, HP, or LAE. Motility was determined by spot inoculating cultures on soft brain heart infusion agar (0.3% agar). Cultures grown in SICs of antimicrobials were also inoculated onto Caco-2 cells (10:1 MOI) to determine the effects on subsequent adhesion and invasion. Last, relative expression of key virulence genes (prfA, plcB, hlyA, actA, inlA, inlB, sigB, and virR) following growth in SICs were determined by RT-qPCR. Results indicate that L. monocytogenes growth in the presence of SICs of EPL, HP, or LAE did not affect the motility, adhesion, or invasion capacity of either strain. Changes in gene expression were observed for both L. monocytogenes strains. More specifically, SICs of EPL and LAE reduced hlyA expression in Scott A, whereas SICs of EPL and HP increased expression of virR. The upregulation of sigB and actA in the presence of EPL and LAE, respectively, was observed in strain 2014L-6025. These findings indicate that exposure to SICs of these antimicrobials have varying effects on L. monocytogenes that differ by strain. Although no phenotypic effects were observed in terms of motility, adhesion, and invasion, the observed changes in virulence gene expression warrants further investigation.

4.
Prev Vet Med ; 208: 105766, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228513

RESUMO

Salmonella species are an important cause of gastrointestinal disease in animals, including goats. Additionally, Salmonella species are among the top five U.S. foodborne pathogens causing illness to humans. The goat industry is rapidly expanding in the U.S. yet estimates of Salmonella prevalence within these populations is lacking. The aim of this study was to investigate the fecal prevalence, antimicrobial resistance (AMR), biofilm potential, and virulence profile of Salmonella species isolated from goat feces as part of the United States Department of Agriculture (USDA) National Animal Health Monitoring System (NAHMS) Goat 2019 study, enteric microbe component. A total of 4917 fecal samples were collected from 332 operations, from September 2019-March 2020. Salmonella were isolated using standard enrichment and culture methods; antimicrobial susceptibility was determined by broth microdilution. Biofilm production was assessed using a crystal violet assay and normalized to a positive control strain, and PCR was used to detect virulence genes. Overall, we detected a low prevalence (0.7%, n = 35/4917) of Salmonella in goat feces and identified a broad range of serotypes including S. Bareilly (35%) and a single rare S. Sharon. All isolates were pansusceptible to 14 antimicrobials except one, which was resistant to only tetracycline (MIC ≥ 32 µg/mL). All strains were found to possess the majority of virulence determinants screened, and 40% (14 of 35) formed weak, moderate, or strong biofilm. We found a low prevalence of Salmonella, and characteristics of Salmonella in the U.S. goat population informs ongoing public health efforts to manage risk of animal food products and animal interactions.


Assuntos
Anti-Infecciosos , Cabras , Estados Unidos/epidemiologia , Animais , Humanos , Violeta Genciana , Salmonella , Antibacterianos/uso terapêutico , Tetraciclina , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/veterinária , Farmacorresistência Bacteriana Múltipla/genética
5.
J Food Prot ; 83(6): 1010-1019, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32044976

RESUMO

ABSTRACT: The documented survival of pathogenic bacteria, including Listeria monocytogenes (LM), Shiga toxin-producing Escherichia coli (STEC), and Salmonella during the manufacture and aging of some cheeses highlights the need for additional interventions to enhance food safety. Unfortunately, few interventions are compliant with the Standards of Identity for cheese. Protective bacterial cultures (PCs) represent actionable, natural interventions. However, supportive data for commercially produced PCs regarding their efficacy against pathogens and potential antagonism with each other and cheesemaking cultures are scant, thereby impeding their potential use by the cheese industry. The overall objective of this study was to identify commercially produced PCs that exert antimicrobial activity toward pathogens with minimal impact on beneficial cheese microbes. Direct antagonism and agar well diffusion assays were used to determine the impact of 10 commercially produced PCs on the growth of starter cultures and cultures of ripening bacteria and fungi. Deferred antagonism was used to evaluate the potential for antimicrobial effects against LM, STEC, and Salmonella. PCs and starter cultures were cocultured in ultrahigh-temperature-processed milk to determine the effects of coculture on starter acidification profiles when incubated according to a simulated cheesemaking temperature profile (4 h at 35°C followed by 20 h at 20°C). Compatibility assays suggest that PC antagonism is microbe and strain specific. Only one PC negatively impacted the acidification of the starters tested. PC antagonism of ripening bacteria and fungi growth varied but was consistent within species. All PCs displayed deferred inhibition of LM, STEC, and Salmonella growth, but to varying degrees. These data identify commercial PCs with potential for the control of pathogens and characterize their compatibility with cheesemaking cultures for future use by cheesemakers and investigations of their efficacy in the production of cheese.


Assuntos
Queijo , Listeria monocytogenes , Escherichia coli Shiga Toxigênica , Animais , Queijo/análise , Microbiologia de Alimentos , Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA