Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Immunity ; 53(3): 533-547.e7, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32735843

RESUMO

Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.


Assuntos
Apoptose/imunologia , Macrófagos/imunologia , Necroptose/imunologia , Piroptose/imunologia , Infecções por Salmonella/imunologia , Salmonella/imunologia , Animais , Caspase 1/deficiência , Caspase 1/genética , Caspase 12/deficiência , Caspase 12/genética , Caspase 8/genética , Caspases Iniciadoras/deficiência , Caspases Iniciadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
2.
Nature ; 602(7896): 328-335, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34933320

RESUMO

Mutations in the protein kinase PINK1 lead to defects in mitophagy and cause autosomal recessive early onset Parkinson's disease1,2. PINK1 has many unique features that enable it to phosphorylate ubiquitin and the ubiquitin-like domain of Parkin3-9. Structural analysis of PINK1 from diverse insect species10-12 with and without ubiquitin provided snapshots of distinct structural states yet did not explain how PINK1 is activated. Here we elucidate the activation mechanism of PINK1 using crystallography and cryo-electron microscopy (cryo-EM). A crystal structure of unphosphorylated Pediculus humanus corporis (Ph; human body louse) PINK1 resolves an N-terminal helix, revealing the orientation of unphosphorylated yet active PINK1 on the mitochondria. We further provide a cryo-EM structure of a symmetric PhPINK1 dimer trapped during the process of trans-autophosphorylation, as well as a cryo-EM structure of phosphorylated PhPINK1 undergoing a conformational change to an active ubiquitin kinase state. Structures and phosphorylation studies further identify a role for regulatory PINK1 oxidation. Together, our research delineates the complete activation mechanism of PINK1, illuminates how PINK1 interacts with the mitochondrial outer membrane and reveals how PINK1 activity may be modulated by mitochondrial reactive oxygen species.


Assuntos
Proteínas de Insetos , Pediculus , Proteínas Quinases , Animais , Microscopia Crioeletrônica , Proteínas de Insetos/metabolismo , Mitocôndrias , Mitofagia , Fosforilação , Conformação Proteica , Proteínas Quinases/metabolismo , Ubiquitina/metabolismo
3.
PLoS Biol ; 21(4): e3002066, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37053271

RESUMO

With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum/metabolismo , Actinas/genética , Actinas/metabolismo , Profilinas/genética , Profilinas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Malária Falciparum/genética , Eritrócitos/parasitologia , Antimaláricos/farmacologia
5.
Immunol Cell Biol ; 95(6): 520-524, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28446796

RESUMO

In just over a decade, the field of biomedical research has witnessed a radical evolution in technologies for the 3- and 4-dimensional imaging of biological samples. Light sheet fluorescence microscopy is quickly developing into a powerful approach for fast, volumetric imaging of cells, tissues and living organisms. This review touches on the development of 3-dimensional imaging, from its foundations, namely from the invention of confocal microscopy in the twentieth century to more recent examples, notably the IsoView SPIM, the Lattice Light Sheet Microscope and swept confocally aligned planar excitation. These technologies overcome the limitations of conventional optical sectioning techniques and enable unprecedented levels of spatio-temporal resolution with low levels of phototoxicity. Developing in parallel with powerful computational approaches, light sheet based methods promise to completely transform cell biology as we know it today.


Assuntos
Imageamento Tridimensional/métodos , Invenções , Microscopia/métodos , Animais , História do Século XX , Humanos , Imageamento Tridimensional/tendências , Microscopia/história , Microscopia/tendências
6.
Phys Chem Chem Phys ; 17(28): 18393-402, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26104504

RESUMO

In order to fully understand the dynamics of processes within biological lipid membranes, it is necessary to possess an intimate knowledge of the physical state and ordering of lipids within the membrane. Here we report the use of three molecular rotors based on meso-substituted boron-dipyrrin (BODIPY) in combination with fluorescence lifetime spectroscopy to investigate the viscosity and phase behaviour of model lipid bilayers. In phase-separated giant unilamellar vesicles, we visualise both liquid-ordered (Lo) and liquid-disordered (Ld) phases using fluorescence lifetime imaging microscopy (FLIM), determining their associated viscosity values, and investigate the effect of composition on the viscosity of these phases. Additionally, we use molecular dynamics simulations to investigate the orientation of the BODIPY probes within the bilayer, as well as using molecular dynamics simulations and fluorescence correlation spectroscopy (FCS) to compare diffusion coefficients with those predicted from the fluorescence lifetimes of the probes.


Assuntos
Compostos de Boro/química , Bicamadas Lipídicas/química , Difusão , Simulação de Dinâmica Molecular , Espectrometria de Fluorescência , Lipossomas Unilamelares/química , Viscosidade
7.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557491

RESUMO

Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/-), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/- mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/- mice and partially reversed gene expression changes in Kat6b+/- cortical neurons. Both compounds improved sociability in Kat6b+/- mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.


Assuntos
Anormalidades Múltiplas , Acetilcarnitina , Hipotireoidismo Congênito , Anormalidades Craniofaciais , Histona Acetiltransferases , Deficiência Intelectual , Instabilidade Articular , Animais , Humanos , Camundongos , Anormalidades Múltiplas/tratamento farmacológico , Anormalidades Múltiplas/genética , Acetilação , Acetilcarnitina/farmacologia , Acetilcarnitina/uso terapêutico , Blefarofimose , Cromatina , Anormalidades Craniofaciais/tratamento farmacológico , Anormalidades Craniofaciais/genética , Éxons , Fácies , Cardiopatias Congênitas , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/genética
8.
Commun Biol ; 7(1): 461, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627519

RESUMO

EphB6 is an understudied ephrin receptor tyrosine pseudokinase that is downregulated in multiple types of metastatic cancers. Unlike its kinase-active counterparts which autophosphorylate and transmit signals upon intercellular interaction, little is known about how EphB6 functions in the absence of intrinsic kinase activity. Here, we unveil a molecular mechanism of cell-cell interaction driven by EphB6. We identify ephrinB1 as a cognate ligand of EphB6 and show that in trans interaction of EphB6 with ephrinB1 on neighboring cells leads to the formation of large co-clusters at the plasma membrane. These co-clusters exhibit a decreased propensity towards endocytosis, suggesting a unique characteristic for this type of cell-cell interaction. Using lattice light-sheet microscopy, 3D structured illumination microscopy and cryo-electron tomography techniques, we show that co-clustering of EphB6 and ephrinB1 promotes the formation of double-membrane tubular structures between cells. Importantly, we also demonstrate that these intercellular structures stabilize cell-cell adhesion, leading to a reduction in the invasive behavior of cancer cells. Our findings rationalize a role for EphB6 pseudokinase as a tumor suppressor when interacting with its ligands in trans.


Assuntos
Fosforilação , Invasividade Neoplásica
9.
Nat Commun ; 15(1): 5219, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890312

RESUMO

With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.


Assuntos
Acetamidas , Antimaláricos , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Acetamidas/farmacologia , Acetamidas/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Antimaláricos/farmacologia , Antimaláricos/química , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Mutação , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Humanos , Resistência a Medicamentos/genética , Resistência a Medicamentos/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos
10.
Nat Commun ; 14(1): 2909, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253716

RESUMO

The spatial sorting of RNA transcripts is fundamental for the refinement of gene expression to distinct subcellular regions. Although, in non-mammalian early embryogenesis, differential RNA localisation presages cell fate determination, in mammals it remains unclear. Here, we uncover apical-to-basal RNA asymmetries in outer blastomeres of 16-cell stage mouse preimplantation embryos. Basally directed RNA transport is facilitated in a microtubule- and lysosome-mediated manner. Yet, despite an increased accumulation of RNA transcripts in basal regions, higher translation activity occurs at the more dispersed apical RNA foci, demonstrated by spatial heterogeneities in RNA subtypes, RNA-organelle interactions and translation events. During the transition to the 32-cell stage, the biased inheritance of RNA transcripts, coupled with differential translation capacity, regulates cell fate allocation of trophectoderm and cells destined to form the pluripotent inner cell mass. Our study identifies a paradigm for the spatiotemporal regulation of post-transcriptional gene expression governing mammalian preimplantation embryogenesis and cell fate.


Assuntos
Embrião de Mamíferos , RNA , Camundongos , Animais , RNA/metabolismo , Embrião de Mamíferos/metabolismo , Diferenciação Celular/genética , Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética
11.
Commun Biol ; 5(1): 333, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393572

RESUMO

RhopH complexes consists of Clag3, RhopH2 and RhopH3 and are essential for growth of Plasmodium falciparum inside infected erythrocytes. Proteins are released from rhoptry organelles during merozoite invasion and trafficked to the surface of infected erythrocytes and enable uptake of nutrients. RhopH3, unlike other RhopH proteins, is required for parasite invasion, suggesting some cellular processes RhopH proteins function as single players rather than a complex. We show the RhopH complex has not formed during merozoite invasion. Clag3 is directly released into the host cell cytoplasm, whilst RhopH2 and RhopH3 are released into the nascent parasitophorous vacuole. Export of RhopH2 and RhopH3 from the parasitophorous vacuole into the infected erythrocyte cytoplasm enables assembly of Clag3/RhopH2/RhopH3 complexes and incorporation into the host cell membrane concomitant with activation of nutrient uptake. This suggests compartmentalisation prevents premature channel assembly before intact complex is assembled at the host cell membrane.


Assuntos
Membrana Eritrocítica , Malária Falciparum , Membrana Eritrocítica/metabolismo , Eritrócitos/parasitologia , Humanos , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
12.
Nat Microbiol ; 7(12): 2039-2053, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36396942

RESUMO

The most severe form of malaria is caused by Plasmodium falciparum. These parasites invade human erythrocytes, and an essential step in this process involves the ligand PfRh5, which forms a complex with cysteine-rich protective antigen (CyRPA) and PfRh5-interacting protein (PfRipr) (RCR complex) and binds basigin on the host cell. We identified a heteromeric disulfide-linked complex consisting of P. falciparum Plasmodium thrombospondin-related apical merozoite protein (PfPTRAMP) and P. falciparum cysteine-rich small secreted protein (PfCSS) and have shown that it binds RCR to form a pentameric complex, PCRCR. Using P. falciparum lines with conditional knockouts, invasion inhibitory nanobodies to both PfPTRAMP and PfCSS, and lattice light-sheet microscopy, we show that they are essential for merozoite invasion. The PCRCR complex functions to anchor the contact between merozoite and erythrocyte membranes brought together by strong parasite deformations. We solved the structure of nanobody-PfCSS complexes to identify an inhibitory epitope. Our results define the function of the PCRCR complex and identify invasion neutralizing epitopes providing a roadmap for structure-guided development of these proteins for a blood stage malaria vaccine.


Assuntos
Antígenos de Grupos Sanguíneos , Vacinas Antimaláricas , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Cisteína , Eritrócitos , Epitopos
13.
Nat Commun ; 13(1): 4400, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906227

RESUMO

Tryptophan C-mannosylation stabilizes proteins bearing a thrombospondin repeat (TSR) domain in metazoans. Here we show that Plasmodium falciparum expresses a DPY19 tryptophan C-mannosyltransferase in the endoplasmic reticulum and that DPY19-deficiency abolishes C-glycosylation, destabilizes members of the TRAP adhesin family and inhibits transmission to mosquitoes. Imaging P. falciparum gametogenesis in its entirety in four dimensions using lattice light-sheet microscopy reveals defects in ΔDPY19 gametocyte egress and exflagellation. While egress is diminished, ΔDPY19 microgametes still fertilize macrogametes, forming ookinetes, but these are abrogated for mosquito infection. The gametogenesis defects correspond with destabilization of MTRAP, which we show is C-mannosylated in P. falciparum, and the ookinete defect is concordant with defective CTRP secretion on the ΔDPY19 background. Genetic complementation of DPY19 restores ookinete infectivity, sporozoite production and C-mannosylation activity. Therefore, tryptophan C-mannosylation by DPY19 ensures TSR protein quality control at two lifecycle stages for successful transmission of the human malaria parasite.


Assuntos
Culicidae , Malária Falciparum , Animais , Culicidae/metabolismo , Glicosilação , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trombospondinas/metabolismo , Triptofano/metabolismo
14.
Sci Immunol ; 7(68): eabi6763, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148201

RESUMO

Proteasome dysfunction can lead to autoinflammatory disease associated with elevated type I interferon (IFN-αß) and NF-κB signaling; however, the innate immune pathway driving this is currently unknown. Here, we identified protein kinase R (PKR) as an innate immune sensor for proteotoxic stress. PKR activation was observed in cellular models of decreased proteasome function and in multiple cell types from patients with proteasome-associated autoinflammatory disease (PRAAS). Furthermore, genetic deletion or small-molecule inhibition of PKR in vitro ameliorated inflammation driven by proteasome deficiency. In vivo, proteasome inhibitor-induced inflammatory gene transcription was blunted in PKR-deficient mice compared with littermate controls. PKR also acted as a rheostat for proteotoxic stress by triggering phosphorylation of eIF2α, which can prevent the translation of new proteins to restore homeostasis. Although traditionally known as a sensor of RNA, under conditions of proteasome dysfunction, PKR sensed the cytoplasmic accumulation of a known interactor, interleukin-24 (IL-24). When misfolded IL-24 egress into the cytosol was blocked by inhibition of the endoplasmic reticulum-associated degradation pathway, PKR activation and subsequent inflammatory signaling were blunted. Cytokines such as IL-24 are normally secreted from cells; therefore, cytoplasmic accumulation of IL-24 represents an internal danger-associated molecular pattern. Thus, we have identified a mechanism by which proteotoxic stress is detected, causing inflammation observed in the disease PRAAS.


Assuntos
Imunidade Inata/imunologia , Interleucinas/imunologia , eIF-2 Quinase/imunologia , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , eIF-2 Quinase/deficiência
15.
Pathology ; 53(5): 608-612, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33618863

RESUMO

We reviewed haematological investigations for 43 patients treated at a single centre with alectinib, an inhibitor of anaplastic lymphoma kinase (ALK) which is considered standard first-line treatment for patients with ALK-rearranged advanced non-small cell lung cancer. Ninety-five percent of patients developed marked acanthocytosis, echinocytosis and/or spheroacanthocytosis, not observable with prior treatment with other ALK-inhibitors. Anaemia developed in 73% of patients (38% <100 g/L, 8% <80 g/L), though definite new haemolysis was present in only 11%. Eosin-5-maleimide binding was reduced in all assessed patients, and increased membrane cholesterol was identified in one patient assessed with lattice light sheet microscopy. We have identified a previously undescribed phenomenon whereby alectinib induces red cell membrane abnormalities in nearly all patients through an unclear, but likely ALK-independent, mechanism, resulting in mild anaemia without universal haemolysis.


Assuntos
Abetalipoproteinemia/patologia , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Carbazóis/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Piperidinas/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Abetalipoproteinemia/induzido quimicamente , Quinase do Linfoma Anaplásico/metabolismo , Anemia/induzido quimicamente , Anemia/patologia , Carbazóis/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Hemólise/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Maleimidas/metabolismo , Piperidinas/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Estudos Retrospectivos
16.
Nat Commun ; 12(1): 3620, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131147

RESUMO

Host membrane remodeling is indispensable for viruses, bacteria, and parasites, to subvert the membrane barrier and obtain entry into cells. The malaria parasite Plasmodium spp. induces biophysical and molecular changes to the erythrocyte membrane through the ordered secretion of its apical organelles. To understand this process and address the debate regarding how the parasitophorous vacuole membrane (PVM) is formed, we developed an approach using lattice light-sheet microscopy, which enables the parasite interaction with the host cell membrane to be tracked and characterized during invasion. Our results show that the PVM is predominantly formed from the erythrocyte membrane, which undergoes biophysical changes as it is remodeled across all stages of invasion, from pre-invasion through to PVM sealing. This approach enables a functional interrogation of parasite-derived lipids and proteins in PVM biogenesis and echinocytosis during Plasmodium falciparum invasion and promises to yield mechanistic insights regarding how this is more generally orchestrated by other intracellular pathogens.


Assuntos
Membrana Eritrocítica/parasitologia , Eritrócitos/parasitologia , Tomografia Computadorizada Quadridimensional/métodos , Interações Hospedeiro-Parasita/fisiologia , Malária/parasitologia , Vacúolos/metabolismo , Animais , Membrana Eritrocítica/metabolismo , Humanos , Merozoítos , Parasitos , Plasmodium/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
17.
PeerJ ; 8: e8751, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32185116

RESUMO

Insulin-stimulated glucose transport is a characteristic property of adipocytes and muscle cells and involves the regulated delivery of glucose transporter (GLUT4)-containing vesicles from intracellular stores to the cell surface. Fusion of these vesicles results in increased numbers of GLUT4 molecules at the cell surface. In an attempt to overcome some of the limitations associated with both primary and cultured adipocytes, we expressed an epitope- and GFP-tagged version of GLUT4 (HA-GLUT4-GFP) in HeLa cells. Here we report the characterisation of this system compared to 3T3-L1 adipocytes. We show that insulin promotes translocation of HA-GLUT4-GFP to the surface of both cell types with similar kinetics using orthologous trafficking machinery. While the magnitude of the insulin-stimulated translocation of GLUT4 is smaller than mouse 3T3-L1 adipocytes, HeLa cells offer a useful, experimentally tractable, human model system. Here, we exemplify their utility through a small-scale siRNA screen to identify GOSR1 and YKT6 as potential novel regulators of GLUT4 trafficking in human cells.

18.
Nat Commun ; 11(1): 3151, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561730

RESUMO

Mixed lineage kinase domain-like (MLKL) is the terminal protein in the pro-inflammatory necroptotic cell death program. RIPK3-mediated phosphorylation is thought to initiate MLKL oligomerization, membrane translocation and membrane disruption, although the precise choreography of events is incompletely understood. Here, we use single-cell imaging approaches to map the chronology of endogenous human MLKL activation during necroptosis. During the effector phase of necroptosis, we observe that phosphorylated MLKL assembles into higher order species on presumed cytoplasmic necrosomes. Subsequently, MLKL co-traffics with tight junction proteins to the cell periphery via Golgi-microtubule-actin-dependent mechanisms. MLKL and tight junction proteins then steadily co-accumulate at the plasma membrane as heterogeneous micron-sized hotspots. Our studies identify MLKL trafficking and plasma membrane accumulation as crucial necroptosis checkpoints. Furthermore, the accumulation of phosphorylated MLKL at intercellular junctions accelerates necroptosis between neighbouring cells, which may be relevant to inflammatory bowel disease and other necroptosis-mediated enteropathies.


Assuntos
Necroptose , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Transporte Proteico , Proteínas de Junções Íntimas/metabolismo
19.
Cell Rep ; 25(7): 1912-1923.e9, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428357

RESUMO

We and others have recently reported that the SMC protein Smchd1 is a regulator of chromosome conformation. Smchd1 is critical for the structure of the inactive X chromosome and at autosomal targets such as the Hox genes. However, it is unknown how Smchd1 is recruited to these sites. Here, we report that Smchd1 localizes to the inactive X via the Xist-HnrnpK-PRC1 (polycomb repressive complex 1) pathway. Contrary to previous reports, Smchd1 does not bind Xist or other RNA molecules with any specificity. Rather, the localization of Smchd1 to the inactive X is H2AK119ub dependent. Following perturbation of this interaction, Smchd1 is destabilized, which has consequences for gene silencing genome-wide. Our work adds Smchd1 to the PRC1 silencing pathway for X chromosome inactivation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Complexo Repressor Polycomb 1/metabolismo , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X/genética , Animais , Sequência de Bases , Diferenciação Celular , Feminino , Genoma , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Oligonucleotídeos/metabolismo , Transporte Proteico
20.
Science ; 359(6378)2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29472455

RESUMO

Mitochondrial apoptosis is mediated by BAK and BAX, two proteins that induce mitochondrial outer membrane permeabilization, leading to cytochrome c release and activation of apoptotic caspases. In the absence of active caspases, mitochondrial DNA (mtDNA) triggers the innate immune cGAS/STING pathway, causing dying cells to secrete type I interferon. How cGAS gains access to mtDNA remains unclear. We used live-cell lattice light-sheet microscopy to examine the mitochondrial network in mouse embryonic fibroblasts. We found that after BAK/BAX activation and cytochrome c loss, the mitochondrial network broke down and large BAK/BAX pores appeared in the outer membrane. These BAK/BAX macropores allowed the inner mitochondrial membrane to herniate into the cytosol, carrying with it mitochondrial matrix components, including the mitochondrial genome. Apoptotic caspases did not prevent herniation but dismantled the dying cell to suppress mtDNA-induced innate immune signaling.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Citocromos c/metabolismo , DNA Mitocondrial/metabolismo , Fibroblastos , Técnicas de Inativação de Genes , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/química , Multimerização Proteica , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA