Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Am Chem Soc ; 143(27): 10088-10098, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185506

RESUMO

The chemical functionalization of 2D exfoliated black phosphorus (2D BP) continues to attract great interest, although a satisfactory structural characterization of the functionalized material has seldom been achieved. Herein, we provide the first complete structural characterization of 2D BP functionalized with rare discrete Pd2 units, obtained through a mild decomposition of the organometallic dimeric precursor [Pd(η3-C3H5)Cl]2. A multitechnique approach, including HAADF-STEM, solid-state NMR, XPS, and XAS, was used to study in detail the morphology of the palladated nanosheets (Pd2/BP) and to unravel the coordination of Pd2 units to phosphorus atoms of 2D BP. In particular, XAS, backed up by DFT modeling, revealed the existence of unprecedented interlayer Pd-Pd units, sandwiched between stacked BP layers. The preliminary application of Pd2/BP as a catalyst for the hydrogen evolution reaction (HER) in acidic medium highlighted an activity increase due to the presence of Pd2 units.

2.
Chemistry ; 27(71): 17941-17951, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34705317

RESUMO

The use of readily prepared bisphosphonic acids obtained in few steps through a thio-Michael addition of commercially available thiols on tetraethyl vinylidenebisphosphonate enables the straightforward surface modification of amorphous mesoporous zirconia nanoparticles. Simple stirring of the zirconia nanoparticles in a buffered aqueous solution of the proper bisphosphonic acid leads to the surface functionalization of the nanoparticles with different kinds of functional groups, charge and hydrophobic properties. Formation of both chemisorbed and physisorbed layers of the bisphosphonic acid take place, observing after extensive washing a grafting density of 1.1 molecules/nm2 with negligible release in neutral or acidic pH conditions, demonstrating stronger loading compared to monophosphonate derivatives. The modified nanoparticles were characterized by IR, XPS, ζ-potential analysis to investigate the loading of the bisphosphonic acid, FE-SEM to investigate the size and morphologies of the nanoparticles and 31 P and 1 H MAS NMR to investigate the coordination motif of the phosphonate units on the surface. All these analytical techniques demonstrated the strong affinity of the bisphosphonic moiety for the Zr(IV) metal centers. The functionalization with bisphosphonic acids represents a straightforward covalent approach for tailoring the superficial properties of zirconia nanoparticles, much straightforward compared the classic use of trisalkoxysilane or trichlorosilane reagents typically employed for the functionalization of silica and metal oxide nanoparticles. Extension of the use of bisphosphonates to other metal oxide nanoparticles is advisable.


Assuntos
Nanopartículas , Propriedades de Superfície , Zircônio
3.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361730

RESUMO

The characterization of the three-dimensional structure of solids is of major importance, especially in the pharmaceutical field. In the present work, NMR crystallography methods are applied with the aim to refine the crystal structure of carbimazole, an active pharmaceutical ingredient used for the treatment of hyperthyroidism and Grave's disease. Starting from previously reported X-ray diffraction data, two refined structures were obtained by geometry optimization methods. Experimental 1H and 13C isotropic chemical shift measured by the suitable 1H and 13C high-resolution solid state NMR techniques were compared with DFT-GIPAW calculated values, allowing the quality of the obtained structure to be experimentally checked. The refined structure was further validated through the analysis of 1H-1H and 1H-13C 2D NMR correlation experiments. The final structure differs from that previously obtained from X-ray diffraction data mostly for the position of hydrogen atoms.

4.
Mol Pharm ; 16(6): 2569-2578, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31021643

RESUMO

In designing drug delivery systems with improved release properties and bioavailability, the dynamic features of the active pharmaceutical ingredient can be crucial for the final product properties. In this work, we aimed at obtaining the first characterization of the molecular dynamic properties of one of the most common nonsteroidal anti-inflammatory drug, ibuprofen, intercalated in hydrotalcite, an interesting inorganic carrier. By exploiting a variety of solid state NMR techniques, including 1H and 13C MAS spectra and T1 relaxation measurements, performed at variable temperature and carrying out a synergic analysis of all results, it has been possible to ascertain that the mobility of ibuprofen within the carrier is remarkably increased. In particular, strong indications have been obtained that ibuprofen molecules, in addition to internal interconformational dynamics, experience an overall molecular motion. Also considering that ibuprofen is "anchored" to the charged surface of the hydrotalcite layers through its carboxylate moiety, such motion could be a wobbling-in-a-cone. Activation energies and correlation times of all the motions of intercalated ibuprofen have been determined.


Assuntos
Ibuprofeno/química , Espectroscopia de Ressonância Magnética/métodos , Hidróxido de Alumínio/química , Hidróxido de Magnésio/química , Simulação de Dinâmica Molecular
5.
Phys Chem Chem Phys ; 18(22): 15375-83, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27210443

RESUMO

The phase behavior of a mixture of a typical insect pheromone (olean) and a phospholipid (DOPC)/water dispersion is extensively explored through SAXS, NMR and DSC experiments. The results mimic those obtained with anaesthetics in phospholipid/water systems. They also mimic the behavior and microstructure of ternary mixtures of a membrane mimetic, bilayer-forming double chained surfactants, oils and water. Taken together with recent models for conduction of the nervous impulse, all hint at lipid involvement and the underlying unity in mechanisms of pheromone, anaesthetic and hydrophobic drugs, where a local phase change in the lipid membrane architecture may be at least partly involved in the transmission of the signal.

6.
Acc Chem Res ; 46(9): 1914-22, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23488538

RESUMO

Magic-angle-spinning solid-state NMR provides site-resolved structural and chemical information about molecules that complements many other physical techniques. Recent technical advances have made it possible to perform magic-angle-spinning NMR experiments at low temperatures, allowing researchers to trap reaction intermediates and to perform site-resolved studies of low-temperature physical phenomena such as quantum rotations, quantum tunneling, ortho-para conversion between spin isomers, and superconductivity. In examining biological molecules, the improved sensitivity provided by cryogenic NMR facilitates the study of protein assembly or membrane proteins. The combination of low-temperatures with dynamic nuclear polarization has the potential to boost sensitivity even further. Many research groups, including ours, have addressed the technical challenges and developed hardware for magic-angle-spinning of samples cooled down to a few tens of degrees Kelvin. In this Account, we briefly describe these hardware developments and review several recent activities of our group which involve low-temperature magic-angle-spinning NMR. Low-temperature operation allows us to trap intermediates that cannot be studied under ambient conditions by NMR because of their short lifetime. We have used low-temperature NMR to study the electronic structure of bathorhodopsin, the primary photoproduct of the light-sensitive membrane protein, rhodopsin. This project used a custom-built NMR probe that allows low-temperature NMR in the presence of illumination (the image shows the illuminated spinner module). We have also used this technique to study the behavior of molecules within a restricted environment. Small-molecule endofullerenes are interesting molecular systems in which molecular rotors are confined to a well-insulated, well-defined, and highly symmetric environment. We discuss how cryogenic solid state NMR can give information on the dynamics of ortho-water confined in a fullerene cage. Molecular motions are often connected with fundamental chemical properties; therefore, an understanding of molecular dynamics can be important in fields ranging from material science to biochemistry. We present the case of ibuprofen sodium salt which exhibits different degrees of conformational freedom in different parts of the same molecule, leading to a range of line broadening and line narrowing phenomena as a function of temperature.

7.
Magn Reson Chem ; 52(10): 656-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25042413

RESUMO

Critical analysis of the results of studies of molecular rotational dynamics in liquid crystalline substances with the aid of the dielectric spectroscopy (DS) and nuclear magnetic resonance (NMR) is given. Both methods are known to be sensitive to different aspects of molecular rotations: the polarization vector and the relaxation time τ(DS) in the case of DS, a tensor describing a nuclear interaction and the correlation time τ(NMR) for NMR method. Furthermore, both methods provide correlation functions with different rank values. A common basis for the comparison between τ(DS) and τ(NMR) is postulated. Several examples of the temperature dependence of the correlation times coming from the two spectroscopic methods are presented. Qualitative agreements of the correlation times were achieved in most cases.

8.
Magn Reson Chem ; 52(10): 625-39, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25042970

RESUMO

Fluorinated calamitic thermotropic liquid crystals represent an important class of materials for high-tech applications, especially in the field of liquid crystal displays. The investigation of orientational ordering in these systems is fundamental owing to the dependence of their applications on the anisotropic nature of macroscopic optical, dielectric, and visco-elastic properties. NMR spectroscopy is the most powerful technique for studying orientational order in liquid crystalline systems at a molecular level thanks to the possibility of exploiting different anisotropic observables (chemical shift, dipolar couplings, and quadrupolar coupling) and nuclei ((2)H, (13)C, and (19)F). In this paper, the basic theory and NMR experiments useful for the investigation of orientational order on fluorinated calamitic liquid crystals are reported, and a review of the literature published on this subject is given. Finally, orientational order parameters determined by NMR data are discussed in comparison to those obtained by optical and dielectric anisotropy measurements.

9.
Polymers (Basel) ; 16(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543440

RESUMO

The replacement of synthetic and petroleum-based ingredients with greener alternatives of natural origin is an imperative issue in rubber technology for the tire industry. In this study, a glycerin-esterified maleated rosin resin, derived from natural resources, is examined as a potential tackifier in styrene-butadiene rubber (SBR) formulations. A comparison is made with two synthetic resins commonly used as tackifiers in tire manufacturing: a petroleum-derived aromatic resin and a phenolic resin. Specifically, this research investigates how these resins affect the structure, dynamics, and curing characteristics of SBR compounds, which are strictly related to the mechanical and technological properties of the final products. Moving die rheometer and equilibrium swelling experiments are employed to analyze vulcanization kinetics and crosslink density, which are differently influenced by the different resins. Information on the polymer-resin compatibility is gained by differential scanning calorimetry and dynamo-mechanical analysis, while solid-state NMR methods offer insights into the structure and dynamics of both cured and uncured SBR compounds at the molecular level. Overall, our analysis shows that the resin of vegetal origin has a comparable impact on the SBR compound to that observed for the synthetic resins and could be further tested for industrial applications.

10.
ACS Nano ; 18(23): 15139-15153, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804721

RESUMO

We develop here a comprehensive experimental approach to independently determine charge carrier parameters, namely, carrier density and mass, in plasmonic indium tin oxide nanocrystals. Typically, in plasmonic nanocrystals, only the ratio between these two parameters is accessible through optical absorption experiments. The multitechnique methodology proposed here combines single particle and ensemble optical and magneto-optical spectroscopies, also using 119Sn solid-state nuclear magnetic resonance spectroscopy to probe the surface depletion layer. Our methodology overcomes the limitations of standard fitting approaches based on absorption spectroscopy and ultimately gives access to carrier effective mass directly on the NCs, discarding the use of literature value based on bulk or thin film materials. We found that mass values depart appreciably from those measured on thin films; consequently, we found carrier density values that are different from reported literature values for similar systems. The effective mass was found to deviate from the parabolic approximation at a high carrier density. Finally, the dopant activation and defect diagram for ITO NCs for tin doping between 2.5 and 15% are determined. This approach can be generalized to other plasmonic heavily doped semiconductor nanostructures and represents, to the best of our knowledge, the only method to date to characterize the full Drude parameter space of 0-D nanosystems.

11.
Langmuir ; 29(29): 9164-72, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23786424

RESUMO

Polymer/clay nanocomposites show remarkably improved properties (mechanical properties, as well as decreased gas permeability and flammability, etc.) with respect to their microscale counterparts and pristine polymers. Due to the substantially apolar character of most of the organic polymers, natural occurring hydrophilic clays are modified into organophilic clays with consequent increase of the polymer/clay compatibility. Different strategies have been developed for the preparation of nanocomposites with improved properties, especially aimed at achieving the best dispersion of clay platelets in the polymer matrix. In this paper we present the preparation and characterization of polymer/clay nanocomposites composed of low-density polyethylene (LDPE) and natural clay, montmorillonite-containing bentonite. Two different forms of the clay have been considered: the first, a commercial organophilic bentonite (Nanofil 15), obtained by exchanging the natural cations with dimethyldioctadecylammonium (2C18) cations, and the second, obtained by performing a grafting reaction of an alkoxysilane containing a polymerizable group, 3-(trimethoxysilyl)propyl methacrylate (TSPM), onto Nanofil 15. Both the clays and LDPE/clay nanocomposites were characterized by thermal, FT-IR, and X-ray diffraction techniques. The samples were also investigated by means of (29)Si, (13)C, and (1)H solid-state NMR, obtaining information on the structural properties of the modified clays. Moreover, by exploiting the effect of bentonite paramagnetic (Fe(3+)) ions on proton spin-lattice relaxation times (T1's), useful information about the extent of the polymer-clay dispersion and their interfacial interactions could be obtained.

12.
J Colloid Interface Sci ; 636: 279-290, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640549

RESUMO

HYPOTHESIS: Sodium oleate (NaOL) self-aggregates in water forming rodlike micelles with different length depending on NaOL concentration; when KCl is added wormlike micelles form, which entangle giving rise to a viscoelastic dispersion. It is expected that aggregates with different size and shape exhibit different internal and overall molecular motions and collective dynamics. EXPERIMENTS: Two low viscosity NaOL/water and two viscoelastic NaOL/KCl/water formulations with different NaOL concentration (0.23 and 0.43 M) were investigated by 1H fast field cycling NMR relaxometry over broad temperature and Larmor frequency ranges, after a first screening by 1H and 13C NMR spectroscopy at high frequency. FINDINGS: The analysis of the collected data indicated that fast conformational isomerization and rotation of NaOL about its long molecular axis and lateral diffusion of NaOL around the axis of the cylindrical aggregates are slightly affected by the aggregate shape and length. On the other hand, fluctuations of the local order director are quite different in the fluid and viscoelastic systems, reflecting the shape and size of the aggregates. Quantitative information was obtained on activation energy for fast internal and overall motions, correlation times and activation energy for lateral diffusion, and coherence length for collective order fluctuations.

13.
J Mater Chem A Mater ; 11(11): 5568-5583, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936468

RESUMO

Adsorbents able to uptake large amounts of gases within a narrow range of pressure, i.e., phase-change adsorbents, are emerging as highly interesting systems to achieve excellent gas separation performances with little energy input for regeneration. A recently discovered phase-change metal-organic framework (MOF) adsorbent is F4_MIL-140A(Ce), based on CeIV and tetrafluoroterephthalate. This MOF displays a non-hysteretic step-shaped CO2 adsorption isotherm, reaching saturation in conditions of temperature and pressure compatible with real life application in post-combustion carbon capture, biogas upgrading and acetylene purification. Such peculiar behaviour is responsible for the exceptional CO2/N2 selectivity and reverse CO2/C2H2 selectivity of F4_MIL-140A(Ce). Here, we combine data obtained from a wide pool of characterisation techniques - namely gas sorption analysis, in situ infrared spectroscopy, in situ powder X-ray diffraction, in situ X-ray absorption spectroscopy, multinuclear solid state nuclear magnetic resonance spectroscopy and adsorption microcalorimetry - with periodic density functional theory simulations to provide evidence for the existence of a unique cooperative CO2 adsorption mechanism in F4_MIL-140A(Ce). Such mechanism involves the concerted rotation of perfluorinated aromatic rings when a threshold partial pressure of CO2 is reached, opening the gate towards an adsorption site where CO2 interacts with both open metal sites and the fluorine atoms of the linker.

14.
Polymers (Basel) ; 14(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35215681

RESUMO

The characterization of the structural and dynamic properties of rubber networks is of fundamental importance in rubber science and technology to design materials with optimized mechanical properties. In this work, natural and isoprene rubber networks obtained by curing at three different temperatures (140, 150, and 170 °C) and three different sulfur contents (1, 2, and 3 phr) in the presence of a 3 phr accelerator were studied using a combination of low-field time-domain NMR (TD-NMR) techniques, including 1H multiple-quantum experiments for the measurement of residual dipolar couplings (Dres), the application of the Carr-Purcell-Meiboom-Gill pulse sequence for the measurement of the transverse magnetization decay and the extraction of 1H T2 relaxation times, and the use of field cycling NMR relaxometry for the determination of T1 relaxation times. The microscopic properties determined by TD-NMR experiments were discussed in comparison with the macroscopic properties obtained using equilibrium swelling, moving die rheometer, and calorimetric techniques. The obtained correlations between NMR observables, crosslink density values, maximum torque values, and glass transition temperatures provided insights into the effects of the vulcanization temperature and accelerator/sulfur ratio on the structure of the polymer networks, as well as on the effects of crosslinking on the segmental dynamics of elastomers. Dres and T2 were found to show linear correlations with the crosslink density determined by equilibrium swelling, while T1 depends on the local dynamics of polymer segments related to the glass transition, which is also affected by chemical modifications of the polymer chains occurring during vulcanization.

15.
J Phys Chem Lett ; 13(40): 9517-9525, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36200785

RESUMO

Mixed-cation lead mixed-halide perovskites are the best candidates for perovskite-based photovoltaics, thanks to their higher efficiency and stability compared to the single-cation single-halide parent compounds. TripleMix (Cs0.05MA0.14FA0.81PbI2.55Br0.45 with FA = formamidinium and MA = methylammonium) is one of the most efficient and stable mixed perovskites for single-junction solar cells. The microscopic reasons why triple-cation perovskites perform so well are still under debate. In this work, we investigated the structure and dynamics of TripleMix by exploiting multinuclear solid-state nuclear magnetic resonance (SSNMR), which can provide this information at a level of detail not accessible by other techniques. 133Cs, 13C, 1H, and 207Pb SSNMR spectra confirmed the inclusion of all ions in the perovskite, without phase segregation. Complementary measurements showed a peculiar longitudinal relaxation behavior for the 1H and 207Pb nuclei in TripleMix with respect to single-cation single-halide perovskites, suggesting slower dynamics of both organic cations and halide anions, possibly related to the high photovoltaic performances.

16.
Chemphyschem ; 12(5): 974-81, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21381176

RESUMO

The internal rotations and interconformational jumps of ibuprofen in the solid state are fully characterized by the simultaneous analysis of a variety of low- and high-resolution NMR experiments for the measurement of several (13)C and (1)H spectral and relaxation properties, performed at different temperatures and, in some cases, frequencies. The results are first qualitatively analyzed to identify the motions of the different molecular fragments and to assign them to specific frequency ranges (slow, <10(3) Hz; intermediate, 10(3)-10(6) Hz; and fast, >10(6) Hz). In a second step, a simultaneous fit of the experimental data sets most sensitive to each frequency range is performed by means of suitable motional models to obtain, for each motion, values of correlation times and activation energies. The rotations of the three methyl groups around their ternary symmetry axes, which occur in the fast regime, are characterized by slightly different activation energies. Thanks to the simultaneous analysis of (1)H and (13)C data, the π-flip of the dimeric structure made by the acidic groups is also identified and seen to occur in the fast regime. On the contrary, the π-flip of the phenyl ring is found to occur in the slow motional regime, while the rotations of the isobutyl and propionic groups are frozen. The approach used appears to be of general applicability for studying the dynamics of small organic molecules.


Assuntos
Ibuprofeno/química , Isótopos de Carbono/química , Ácidos Carboxílicos/química , Dimerização , Espectroscopia de Ressonância Magnética , Modelos Teóricos , Simulação de Dinâmica Molecular
17.
J Phys Chem A ; 115(32): 8783-90, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21744822

RESUMO

The various internal rotations and interconformational jumps of the Na-salt form of ibuprofen in the solid state were characterized in detail by means of the simultaneous analysis of a variety of low- and high-resolution NMR experiments aimed at measuring several (13)C and (1)H spectral and relaxation properties at different temperatures and frequencies. The results were first qualitatively analyzed to identify the motions of the different molecular fragments and to assign them to specific frequency regimes (slow, <10(3) Hz; intermediate, 10(3)-10(6) Hz; and fast, >10(6) Hz). Subsequently, a simultaneous fit of the experimental data sets most sensitive to each frequency range was performed by using suitable motional models, thus obtaining, for each motion, correlation times and activation energies. The motions so characterized were: the rotations of the three methyl groups and of the isobutyl group, occurring in the fast regime, and the π-flip of the phenyl ring, belonging to the intermediate motional regime. The results obtained for the Na-salt form were compared with those of the acidic form of ibuprofen, previously obtained from a similar solid-state NMR approach: despite the very similar chemical structure of the two compounds, their dynamic properties in the solid state are noticeably different.


Assuntos
Ibuprofeno/química , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Isótopos de Carbono/química , Movimento (Física) , Prótons
18.
J Colloid Interface Sci ; 594: 802-811, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794402

RESUMO

HYPOTHESIS: It has been recently shown that, in our organism, the secretions of Ca2+, Mg2+ and phosphate ions lead to the precipitation of amorphous magnesium-calcium phosphate nanoparticles (AMCPs) in the small intestine, where the glycoprotein mucin is one of the most abundant proteins, being the main component of the mucus hydrogel layer covering gut epithelium. Since AMCPs precipitate in vivo in a mucin-rich environment, we aim at studying the effect of this glycoprotein on the formation and features of endogenous-like AMCPs. EXPERIMENTS: AMCPs were synthesized from aqueous solution in the presence of different concentrations of mucin, and the obtained particles were characterised in terms of crystallinity, composition and morphology. Solid State NMR investigation was also performed in order to assess the interplay between mucin and AMCPs at a sub-nanometric level. FINDING: Results show that AMCPs form in the presence of mucin and the glycoprotein is efficiently incorporated in the amorphous particles. NMR indicates the existence of interactions between AMCPs and mucin, revealing how AMCPs in mucin-hybrid nanoparticles affect the features of both proteic and oligosaccharidic portions of the glycoprotein. Considering that the primary function of mucin is the protection of the intestine from pathogens, we speculate that the nature of the interaction between AMCPs and mucin described in the present work might be relevant to the immune system, suggesting a novel type of scenario which could be investigated by combining physico-chemical and biomedical approaches.


Assuntos
Magnésio , Nanopartículas , Fosfatos de Cálcio , Mucinas , Fosfatos
19.
Sci Rep ; 11(1): 14202, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244532

RESUMO

A molecular-level understanding of the structure of the polymeric network formed upon the curing of air-drying artists' oil paints still represents a challenge. In this study we used a set of analytical methodologies classically employed for the characterisation of a paint film-based on infrared spectroscopy and mass spectrometry-in combination with solid state NMR (SSNMR), to characterise model paint layers which present different behaviours towards surface cleaning with water, a commonly applied procedure in art conservation. The study demonstrates, with the fundamental contribution of SSNMR, a relationship between the painting stability and the chemical structure of the polymeric network. In particular, it is demonstrated for the first time that a low degree of cross-linking in combination with a high degree of oxidation of the polymeric network render the oil paint layer sensitive to water.

20.
J Phys Chem B ; 125(17): 4546-4554, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33885314

RESUMO

1H spin-lattice relaxation rate (R1) dispersions were acquired by field-cycling (FC) NMR relaxometry between 0.01 and 35 MHz over a wide temperature range on polyisoprene rubber (IR), either unfilled or filled with different amounts of carbon black, silica, or a combination of both, and sulfur cured. By exploiting the frequency-temperature superposition principle and constructing master curves for the total FC NMR susceptibility, χ″(ω) = ωR1(ω), the correlation times for glassy dynamics, τs, were determined. Moreover, the contribution of polymer dynamics, χpol″(ω), to χ″(ω) was singled out by subtracting the contribution of glassy dynamics, χglass″(ω), well represented by the Cole-Davidson spectral density. Glassy dynamics resulted moderately modified by the presence of fillers, τs values determined for the filled rubbers being slightly different from those of the unfilled one. Polymer dynamics was affected by the presence of fillers in the Rouse regime. A change in the frequency dependence of χpol″(ω) at low frequencies was observed for all filled rubbers, more pronounced for those reinforced with silica, which suggests that the presence of the filler particles can affect chain conformations, resulting in a different Rouse mode distribution, and/or interchain interactions modulated by translational motions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA