Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nucleic Acids Res ; 52(1): 337-354, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38000389

RESUMO

Baz2B is a regulatory subunit of the ATP-dependent chromatin remodeling complexes BRF1 and BRF5, which control access to DNA during DNA-templated processes. Baz2B has been implicated in several diseases and also in unhealthy ageing, however limited information is available on the domains and cellular roles of Baz2B. To gain more insight into the Baz2B function, we biochemically characterized the TAM (Tip5/ARBP/MBD) domain with the auxiliary AT-hook motifs and the bromodomain (BRD). We observed alterations in histone code recognition in bromodomains carrying cancer-associated point mutations, suggesting their potential involvement in disease. Furthermore, the depletion of Baz2B in the Hap1 cell line resulted in altered cell morphology, reduced colony formation and perturbed transcriptional profiles. Despite that, super-resolution microscopy images revealed no changes in the overall chromatin structure in the absence of Baz2B. These findings provide insights into the biological function of Baz2B.


Assuntos
Montagem e Desmontagem da Cromatina , Fatores de Transcrição , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , DNA , Domínios Proteicos , Fatores de Transcrição/genética , Humanos
2.
Biophys J ; 122(16): 3340-3353, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37475214

RESUMO

Blood platelets are central elements of the blood clotting response after wounding. Upon vessel damage, they bind to the surrounding matrix and contract the forming thrombus, thus helping to restore normal blood circulation. The hemostatic function of platelets is directly connected to their mechanics and cytoskeletal organization. The reorganization of the platelet cytoskeleton during spreading occurs within minutes and leads to the formation of contractile actomyosin bundles, but it is not known if there is a direct correlation between the emerging actin structures and the force field that is exerted to the environment. In this study, we combine fluorescence imaging of the actin structures with simultaneous traction force measurements in a time-resolved manner. In addition, we image the final states with superresolution microscopy. We find that both the force fields and the cell shapes have clear geometrical patterns defined by stress fibers. Force generation is localized in a few hotspots, which appear early during spreading, and, in the mature state, anchor stress fibers in focal adhesions. Moreover, we show that, for a gel stiffness in the physiological range, force generation is a very robust mechanism and we observe no systematic dependence on the amount of added thrombin in solution or fibrinogen coverage on the substrate, suggesting that force generation after platelet activation is a threshold phenomenon that ensures reliable thrombus contraction in diverse environments.


Assuntos
Plaquetas , Trombose , Humanos , Plaquetas/metabolismo , Actomiosina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo
3.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070063

RESUMO

Amlodipine, a unique long-lasting calcium channel antagonist and antihypertensive drug, has weak fluorescence in aqueous solutions. In the current paper, we show that direct visualization of amlodipine in live cells is possible due to the enhanced emission in cellular environment. We examined the impact of pH, polarity and viscosity of the environment as well as protein binding on the spectral properties of amlodipine in vitro, and used quantum chemical calculations for assessing the mechanism of fluorescence quenching in aqueous solutions. The confocal fluorescence microscopy shows that the drug readily penetrates the plasma membrane and accumulates in the intracellular vesicles. Visible emission and photostability of amlodipine allow confocal time-lapse imaging and the drug uptake monitoring.


Assuntos
Anlodipino/farmacologia , Microscopia de Fluorescência , Anlodipino/química , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Indóis/metabolismo , Microscopia Confocal , Modelos Biológicos , Conformação Molecular , Soluções
4.
Angew Chem Int Ed Engl ; 60(44): 23835-23841, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34418246

RESUMO

Compartmentalization of chemical reactions inside cells are a fundamental requirement for life. Encapsulins are self-assembling protein-based nanocompartments from the prokaryotic repertoire that present a highly attractive platform for intracellular compartmentalization of chemical reactions by design. Using single-molecule Förster resonance energy transfer and 3D-MINFLUX analysis, we analyze fluorescently labeled encapsulins on a single-molecule basis. Furthermore, by equipping these capsules with a synthetic ruthenium catalyst via covalent attachment to a non-native host protein, we are able to perform in vitro catalysis and go on to show that engineered encapsulins can be used as hosts for transition metal catalysis inside living cells in confined space.


Assuntos
Proteínas de Bactérias/química , Nanoestruturas/química , Compostos Organometálicos/química , Catálise , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência , Mycobacterium smegmatis/química , Tamanho da Partícula
5.
Org Biomol Chem ; 18(15): 2929-2937, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32239080

RESUMO

The actin cytoskeleton is crucial for endocytosis, intracellular trafficking, cell shape maintenance and a wide range of other cellular functions. Recently introduced cell-permeable fluorescent actin probes, such as SiR-actin, suffer from poor membrane permeability and stain some cell populations inhomogeneously due to the active efflux by the plasma membrane pumps. We analyzed a series of new probes composed of jasplakinolide and modified rhodamine fluorophores and found that rhodamine positional isomerism has a profound effect on probe performance. The probes based on the 6'-carboxy-carbopyronine scaffold are considerably less susceptible to efflux and allow efficient staining without efflux pump inhibitors. They can be used for 2D and 3D fluorescence nanoscopy at high nanomolar concentrations without significant cytotoxicity. We show that jasplakinolide-based fluorescent probes bind not only to actin filaments, but also to G-actin, which enables imaging highly dynamic actin structures. We demonstrate an excellent performance of the new probes in multiple organisms and cell types: human cell lines, frog erythrocytes, fruit fly tissues and primary neurons.


Assuntos
Actinas/análise , Depsipeptídeos/química , Corantes Fluorescentes/química , Imagem Óptica , Rodaminas/química , Células Cultivadas , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Estrutura Molecular
6.
J Cell Sci ; 130(9): 1625-1636, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28302909

RESUMO

Acidocalcisome-like organelles are found in all kingdoms of life. Many of their functions, such as the accumulation and storage of metal ions, nitrogen and phosphate, the activation of blood clotting and inflammation, depend on the controlled synthesis and turnover of polyphosphate (polyP), a polymer of inorganic phosphate linked by phosphoric anhydride bonds. The exploration of the role of acidocalcisomes in metabolism and physiology requires the manipulation of polyP turnover, yet the complete set of proteins responsible for this turnover is unknown. Here, we identify a novel type of polyphosphatase operating in the acidocalcisome-like vacuoles of the yeast Saccharomyces cerevisiae, which we called Ppn2. Ppn2 belongs to the PPP-superfamily of metallophosphatases, is activated by Zn2+ ions and exclusively shows endopolyphosphatase activity. It is sorted to vacuoles via the multivesicular body pathway. Together with Ppn1, Ppn2 is responsible for a substantial fraction of polyphosphatase activity that is necessary to mobilize polyP stores, for example in response to phosphate scarcity. This finding opens the way to manipulating polyP metabolism more profoundly and deciphering its roles in phosphate and energy homeostasis, as well as in signaling.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Ácidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Vacúolos/enzimologia , Zinco/metabolismo , Hidrolases Anidrido Ácido/química , Sequência de Aminoácidos , Técnicas de Inativação de Genes , Corpos Multivesiculares/metabolismo , Polifosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/química
7.
J Cell Sci ; 127(Pt 23): 5093-104, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25315834

RESUMO

Eukaryotes contain inorganic polyphosphate (polyP) and acidocalcisomes, which sequester polyP and store amino acids and divalent cations. Why polyP is sequestered in dedicated organelles is not known. We show that polyP produced in the cytosol of yeast becomes toxic. Reconstitution of polyP translocation with purified vacuoles, the acidocalcisomes of yeast, shows that cytosolic polyP cannot be imported, whereas polyP produced by the vacuolar transporter chaperone (VTC) complex, an endogenous vacuolar polyP polymerase, is efficiently imported and does not interfere with growth. PolyP synthesis and import require an electrochemical gradient, probably as a driving force for polyP translocation. VTC exposes its catalytic domain to the cytosol and carries nine vacuolar transmembrane domains. Mutations in the VTC transmembrane regions, which are likely to constitute the translocation channel, block not only polyP translocation but also synthesis. Given that they are far from the cytosolic catalytic domain of VTC, this suggests that the VTC complex obligatorily couples synthesis of polyP to its import in order to avoid toxic intermediates in the cytosol. Sequestration of otherwise toxic polyP might be one reason for the existence of acidocalcisomes in eukaryotes.


Assuntos
Chaperonas Moleculares/metabolismo , Polifosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Transporte Biológico , Domínio Catalítico , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Chaperonas Moleculares/genética , Mutação , Polifosfatos/toxicidade , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Vacúolos/enzimologia , Proteínas de Transporte Vesicular/genética
8.
Biochem Soc Trans ; 44(1): 234-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26862210

RESUMO

Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research.


Assuntos
Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/metabolismo , Polifosfatos/metabolismo , Saccharomyces cerevisiae/enzimologia
9.
Nucleic Acids Res ; 40(22): 11594-602, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042683

RESUMO

DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA-M.HhaI-AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA.


Assuntos
Alquil e Aril Transferases/genética , DNA-Citosina Metilases/genética , DNA-Citosina Metilases/metabolismo , DNA/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Alquilação , Sequência de Aminoácidos , Domínio Catalítico , DNA/química , DNA-Citosina Metilases/química , Escherichia coli/genética , Dados de Sequência Molecular , Mutação , Engenharia de Proteínas , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo
10.
Nucleic Acids Res ; 39(9): 3771-80, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21245034

RESUMO

Methylation of the five position of cytosine in DNA plays important roles in epigenetic regulation in diverse organisms including humans. The transfer of methyl groups from the cofactor S-adenosyl-L-methionine is carried out by methyltransferase enzymes. Using the paradigm bacterial methyltransferase M.HhaI we demonstrate, in a chemically unperturbed system, the first direct real-time analysis of the key mechanistic events-the flipping of the target cytosine base and its covalent activation; these changes were followed by monitoring the hyperchromicity in the DNA and the loss of the cytosine chromophore in the target nucleotide, respectively. Combined with studies of M.HhaI variants containing redesigned tryptophan fluorophores, we find that the target base flipping and the closure of the mobile catalytic loop occur simultaneously, and the rate of this concerted motion inversely correlates with the stability of the target base pair. Subsequently, the covalent activation of the target cytosine is closely followed by but is not coincident with the methyl group transfer from the bound cofactor. These findings provide new insights into the temporal mechanism of this physiologically important reaction and pave the way to in-depth studies of other base-flipping systems.


Assuntos
Citosina/química , DNA-Citosina Metilases/química , DNA/química , Pareamento Incorreto de Bases , Biocatálise , DNA/metabolismo , DNA-Citosina Metilases/genética , DNA-Citosina Metilases/metabolismo , Fluorescência , Movimento (Física) , Mutação , S-Adenosilmetionina/química
11.
Biosens Bioelectron ; 230: 115256, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989663

RESUMO

The preservation of nucleus structure during microscopy imaging is a top priority for understanding chromatin organization, genome dynamics, and gene expression regulation. In this review, we summarize the sequence-specific DNA labelling methods that can be used for imaging in fixed and/or living cells without harsh treatment and DNA denaturation: (i) hairpin polyamides, (ii) triplex-forming oligonucleotides, (iii) dCas9 proteins, (iv) transcription activator-like effectors (TALEs) and (v) DNA methyltransferases (MTases). All these techniques are capable of identifying repetitive DNA loci and robust probes are available for telomeres and centromeres, but visualizing single-copy sequences is still challenging. In our futuristic vision, we see gradual replacement of the historically important fluorescence in situ hybridization (FISH) by less invasive and non-destructive methods compatible with live cell imaging. Combined with super-resolution fluorescence microscopy, these methods will open the possibility to look into unperturbed structure and dynamics of chromatin in living cells, tissues and whole organisms.


Assuntos
Técnicas Biossensoriais , Hibridização in Situ Fluorescente/métodos , DNA/química , Cromatina/genética , Microscopia de Fluorescência/métodos
12.
Nat Commun ; 14(1): 1306, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894547

RESUMO

The development of live-cell fluorescence nanoscopy is powered by the availability of suitable fluorescent probes. Rhodamines are among the best fluorophores for labeling intracellular structures. Isomeric tuning is a powerful method for optimizing the biocompatibility of rhodamine-containing probes without affecting their spectral properties. An efficient synthesis pathway for 4-carboxyrhodamines is still lacking. We present a facile protecting-group-free 4-carboxyrhodamines' synthesis based on the nucleophilic addition of lithium dicarboxybenzenide to the corresponding xanthone. This approach drastically reduces the number of synthesis steps, expands the achievable structural diversity, increases overall yields and permits gram-scale synthesis of the dyes. We synthesize a wide range of symmetrical and unsymmetrical 4-carboxyrhodamines covering the whole visible spectrum and target them to multiple structures in living cells - microtubules, DNA, actin, mitochondria, lysosomes, Halo-tagged and SNAP-tagged proteins. The enhanced permeability fluorescent probes operate at submicromolar concentrations, allowing high-contrast STED and confocal microscopy of living cells and tissues.


Assuntos
Actinas , Corantes Fluorescentes , Rodaminas/química , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Microscopia Confocal
13.
Nat Commun ; 14(1): 2645, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156835

RESUMO

Many proteins involved in eukaryotic phosphate homeostasis are regulated by SPX domains. In yeast, the vacuolar transporter chaperone (VTC) complex contains two such domains, but mechanistic details of its regulation are not well understood. Here, we show at the atomic level how inositol pyrophosphates interact with SPX domains of subunits Vtc2 and Vtc3 to control the activity of the VTC complex. Vtc2 inhibits the catalytically active VTC subunit Vtc4 by homotypic SPX-SPX interactions via the conserved helix α1 and the previously undescribed helix α7. Binding of inositol pyrophosphates to Vtc2 abrogates this interaction, thus activating the VTC complex. Accordingly, VTC activation is also achieved by site-specific point mutations that disrupt the SPX-SPX interface. Structural data suggest that ligand binding induces reorientation of helix α1 and exposes the modifiable helix α7, which might facilitate its post-translational modification in vivo. The variable composition of these regions within the SPX domain family might contribute to the diversified SPX functions in eukaryotic phosphate homeostasis.


Assuntos
Difosfatos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Difosfatos/metabolismo , Transporte Biológico , Homeostase , Fosfatos de Inositol/metabolismo
14.
Nucleic Acids Res ; 37(21): 7332-41, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19783820

RESUMO

DNA cytosine-5 methyltransferases (C5-MTases) are valuable models to study sequence-specific modification of DNA and are becoming increasingly important tools for biotechnology. Here we describe a structure-guided rational protein design combined with random mutagenesis and selection to change the specificity of the HhaI C5-MTase from GCGC to GCG. The specificity change was brought about by a five-residue deletion and introduction of two arginine residues within and nearby one of the target recognizing loops. DNA protection assays, bisulfite sequencing and enzyme kinetics showed that the best selected variant is comparable to wild-type M.HhaI in terms of sequence fidelity and methylation efficiency, and supersedes the parent enzyme in transalkylation of DNA using synthetic cofactor analogs. The designed C5-MTase can be used to produce hemimethylated CpG sites in DNA, which are valuable substrates for studies of mammalian maintenance MTases.


Assuntos
DNA-Citosina Metilases/química , Alquilação , Proteínas de Bactérias/química , Sequência de Bases , Catálise , DNA/química , DNA/metabolismo , DNA-Citosina Metilases/genética , Evolução Molecular Direcionada , Cinética , Modelos Moleculares , Mutagênese , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/química , Especificidade por Substrato
15.
Chem Sci ; 11(28): 7313-7323, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-33777348

RESUMO

Fluorescence microscopy is an essential tool for understanding dynamic processes in living cells and organisms. However, many fluorescent probes for labelling cellular structures suffer from unspecific interactions and low cell permeability. Herein, we demonstrate that the neighbouring group effect which results from positioning an amide group next to a carboxyl group in the benzene ring of rhodamines dramatically increases cell permeability of the rhodamine-based probes through stabilizing a fluorophore in a hydrophobic spirolactone state. Based on this principle, we create probes targeting tubulin, actin and DNA. Their superb staining intensity, tuned toxicity and specificity allows long-term 3D confocal and STED nanoscopy with sub-30 nm resolution. Due to their unrestricted cell permeability and efficient accumulation on the target, the new probes produce high contrast images at low nanomolar concentrations. Superior performance is exemplified by resolving the real microtubule diameter of 23 nm and selective staining of the centrosome inside living cells for the first time.

16.
Artigo em Inglês | MEDLINE | ID: mdl-29685966

RESUMO

Cytosine (C) in DNA is often modified to 5-methylcytosine (m5C) to execute important cellular functions. Despite the significance of m5C for epigenetic regulation in mammals, damage to m5C has received little attention. For instance, almost no studies exist on erroneous methylation of m5C by alkylating agents to doubly or triply methylated bases. Owing to chemical evidence, and because many prokaryotes express methyltransferases able to convert m5C into N4,5-dimethylcytosine (m N4,5C) in DNA, m N4,5C is probably present in vivo We screened a series of glycosylases from prokaryotic to human and found significant DNA incision activity of the Escherichia coli Nei and Fpg proteins at m N4,5C residues in vitro The activity of Nei was highest opposite cognate guanine followed by adenine, thymine (T) and C. Fpg-complemented Nei by exhibiting the highest activity opposite C followed by lower activity opposite T. To our knowledge, this is the first description of a repair enzyme activity at a further methylated m5C in DNA, as well as the first alkylated base allocated as a Nei or Fpg substrate. Based on our observed high sensitivity to nuclease S1 digestion, we suggest that m N4,5C occurs as a disturbing lesion in DNA and that Nei may serve as a major DNA glycosylase in E. coli to initiate its repair.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.


Assuntos
5-Metilcitosina/metabolismo , Citosina/análogos & derivados , DNA-Formamidopirimidina Glicosilase/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Epigênese Genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Citosina/metabolismo , DNA-Formamidopirimidina Glicosilase/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Metilação
17.
ACS Chem Biol ; 12(3): 648-653, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28186404

RESUMO

The free energy of nucleotide hydrolysis depends on phosphate concentration. Cells regulate cytosolic phosphate levels by orchestrating phosphate acquisition and storage through inositol pyrophosphates (PP-InsP) and SPX domains. Here, we report the synthesis of the novel 5-PPP-InsP5 containing a triphosphate subunit. Using this and a series of synthetic PP-InsP, we examined the ligand specificity of the SPX domain in the PP-InsP-controlled yeast polyphosphate polymerase VTC. SPX decodes the relative positioning of the phosphoric anhydrides, their structure (diphosphate vs triphosphate), and the presence of other phosphates on the inositol ring. Despite the higher potency of 1,5-(PP)2-InsP4, 5-PP-InsP5 is the primary activator of VTC in cells, indicating that its higher concentration compensates for its lower potency. 1,5-(PP)2-InsP4 levels rise and could become relevant under stress conditions. Thus, SPX domains may integrate PP-InsP dependent signaling to adapt cytosolic phosphate concentrations to different metabolic situations.


Assuntos
Enzimas/metabolismo , Fosfatos de Inositol/metabolismo , Polifosfatos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
18.
Sci Rep ; 6: 29045, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27363625

RESUMO

The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector.


Assuntos
Transporte Biológico/genética , Proteínas SNARE/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Vacúolos/metabolismo , Ácidos/metabolismo , Fusão de Membrana/genética , Membranas/metabolismo , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/genética
19.
Science ; 352(6288): 986-90, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27080106

RESUMO

Phosphorus is a macronutrient taken up by cells as inorganic phosphate (P(i)). How cells sense cellular P(i) levels is poorly characterized. Here, we report that SPX domains--which are found in eukaryotic phosphate transporters, signaling proteins, and inorganic polyphosphate polymerases--provide a basic binding surface for inositol polyphosphate signaling molecules (InsPs), the concentrations of which change in response to P(i) availability. Substitutions of critical binding surface residues impair InsP binding in vitro, inorganic polyphosphate synthesis in yeast, and P(i) transport in Arabidopsis In plants, InsPs trigger the association of SPX proteins with transcription factors to regulate P(i) starvation responses. We propose that InsPs communicate cytosolic P(i) levels to SPX domains and enable them to interact with a multitude of proteins to regulate P(i) uptake, transport, and storage in fungi, plants, and animals.


Assuntos
Homeostase , Inositol/metabolismo , Proteínas de Transporte de Fosfato/química , Fósforo/metabolismo , Polifosfatos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Citosol/metabolismo , Humanos , Proteínas de Transporte de Fosfato/genética , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
20.
Nucleic Acids Res Suppl ; (2): 73-4, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12903111

RESUMO

Successive enzymatic modification of DNA by two methyltransferases that recognize identical or overlapping sequences and normally target either 5- or N4-position of the same cytosine residue, can lead to the formation of a doubly methylated base--N4,5-dimethylcytosine. Implications of such enzymatic "permethylation" of cytosine on the structure and interactions of DNA are examined.


Assuntos
Citosina/química , DNA/química , Citosina/análogos & derivados , Metilação de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA