RESUMO
BACKGROUND: Hospital strains of Enterococcus faecium could be characterized and typed by various molecular methods (MLST, AFLP, MLVA) and allocated to a distinct clonal complex known as MLST CC17. However, these techniques are laborious, time-consuming and cost-intensive. Our aim was to identify hospital E. faecium strains and differentiate them from colonizing and animal variants by a simple, inexpensive and reliable PCR-based screening assay. We describe here performance and predictive value of a single PCR detecting the insertion element, IS16, to identify hospital E. faecium isolates within a collection of 260 strains of hospital, animal and human commensal origins. METHODS: Specific primers were selected amplifying a 547-bp fragment of IS16. Presence of IS16 was determined by PCR screenings among the 260 E. faecium isolates. Distribution of IS16 was compared with a prevalence of commonly used markers for hospital strains, esp and hylEfm. All isolates were typed by MLST and partly by PFGE. Location of IS16 was analysed by Southern hybridization of plasmid and chromosomal DNA. RESULTS: IS16 was exclusively distributed only among 155 invasive strains belonging to the clonal complex of hospital-associated strains ("CC17"; 28 MLST types) and various vancomycin resistance genotypes (vanA/B/negative). The five invasive IS16-negative strains did not belong to the clonal complex of hospital-associated strains (CC17). IS16 was absent in all but three isolates from 100 livestock, food-associated and human commensal strains ("non-CC17"; 64 MLST types). The three IS16-positive human commensal isolates revealed MLST types belonging to the clonal complex of hospital-associated strains (CC17). The values predicting a hospital-associated strain ("CC17") deduced from presence and absence of IS16 was 100% and thus superior to screening for the presence of esp (66%) and/or hylEfm (46%). Southern hybridizations revealed chromosomal as well as plasmid localization of IS16. CONCLUSIONS: This simple screening assay for insertion element IS16 is capable of differentiating hospital-associated from human commensal, livestock- and food-associated E. faecium strains and thus allows predicting the epidemic strengths or supposed pathogenic potential of a given E. faecium isolate identified within the nosocomial setting.
Assuntos
Infecção Hospitalar/microbiologia , Elementos de DNA Transponíveis , Enterococcus faecium/classificação , Animais , Técnicas de Tipagem Bacteriana , Primers do DNA/genética , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Microbiologia de Alimentos , Marcadores Genéticos , Alemanha , Humanos , Gado/microbiologia , Carne/microbiologia , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Especificidade da Espécie , Resistência a VancomicinaRESUMO
Linezolid is an antibiotic of last resort for the treatment of infections with vancomycin-resistant enterococci (VRE). Here we report the increasing prevalence of linezolid resistance among clinical Enterococcus faecium strains from German hospital patients. Linezolid minimum inhibitory concentrations (MICs) were determined for 4461 clinical E. faecium strains isolated between 2008 and 2014. Isolates originated from the network of diagnostic laboratories collaborating with the National Reference Centre (NRC) for Staphylococci and Enterococci covering all German federal states. All linezolid-resistant isolates were determined by broth microdilution and confirmed by Etest as well as by analysing the 23S rDNA for putative mutations. Marker genes were determined by PCR. Genotyping was performed by SmaI macrorestriction analysis in pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) for selected isolates. An increase in linezolid resistance was observed, from <1% in 2008 to >9% in 2014. Occasionally, outbreaks with linezolid-resistant VRE (ST117) were observed. In total, 232 (92.4%) of 251 linezolid-resistant E. faecium isolates (including 61 vanA and 29 vanB) contained the G2576T 23S rDNA mutation and showed a varying mixture of wild-type and mutated alleles per genome sufficient to confer linezolid resistance. In vitro growth experiments revealed a stable linezolid MIC. Of the 251 linezolid-resistant isolates, 5 were cfr-positive. In conclusion, these NRC data identified a country-wide ongoing trend of increasing linezolid resistance among clinical E. faecium isolates within the last 5 years.
RESUMO
Frequencies of vanB-type Enterococcus faecium increased in Europe during the last years. VanB enterococci show various levels of vancomycin MICs even below the susceptible breakpoint challenging a reliable diagnostics. The performance of 3 chromogenic vancomycin-resistant enterococci (VRE) screening agars, 2 Etest® vancomycin protocols, and different microdilution methods to detect 129 clinical vanB E. faecium strains was investigated. Altogether, 112 (87%) were correctly identified as VanB-type Enterococcus by microdilution MICs. An Etest® macromethod protocol was more sensitive than the standard protocol while keeping sufficient specificity in identifying 15 vanA/vanB-negative strains. Three chromogenic VRE agars performed similarly with 121 (94%), 123 (95%), and 124 (96%) vanB isolates that grew on Brilliance™ VRE Agar, CHROMagar™ VRE, and chromID™ VRE agar, respectively. Using identical media and conditions, we did not identify different growth behaviour on agar and in broth. A few vanB strains showed growth of microcolonies inside the Etest® vancomycin inhibition zones, suggesting a VanB heteroresistance phenotype.
Assuntos
Compostos Cromogênicos/metabolismo , Meios de Cultura/química , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/isolamento & purificação , Infecções por Bactérias Gram-Positivas/diagnóstico , Programas de Rastreamento/métodos , Resistência a Vancomicina , Ágar , Proteínas de Bactérias/genética , Enterococcus faecium/genética , Enterococcus faecium/crescimento & desenvolvimento , Europa (Continente) , Genótipo , Humanos , Testes de Sensibilidade Microbiana/métodos , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Vancomycin-resistant isolates of E. faecalis and E. faecium are of special concern and patients at risk of acquiring a VRE colonization/infection include also intensively-cared neonates. We describe here an ongoing high prevalence of VanB type E. faecium in a neonatal ICU hardly to identify by routine diagnostics. METHODS: During a 10 months' key period 71 E. faecium isolates including 67 vanB-type isolates from 61 patients were collected non-selectively. Vancomycin resistance was determined by different MIC methods (broth microdilution, Vitek® 2) including two Etest® protocols (McFarland 0.5/2.0. on Mueller-Hinton/Brain Heart Infusion agars). Performance of three chromogenic VRE agars to identify the vanB type outbreak VRE was evaluated (BrillianceTM VRE agar, chromIDTM VRE agar, CHROMagarTM VRE). Isolates were genotyped by SmaI- and CeuI-macrorestriction analysis in PFGE, plasmid profiling, vanB Southern hybridisations as well as MLST typing. RESULTS: Majority of vanB isolates (n = 56, 79%) belonged to a single ST192 outbreak strain type showing an identical PFGE pattern and analyzed representative isolates revealed a chromosomal localization of a vanB2-Tn5382 cluster type. Vancomycin MICs in cation-adjusted MH broth revealed a susceptible value of ≤4 mg/L for 31 (55%) of the 56 outbreak VRE isolates. Etest® vancomycin on MH and BHI agars revealed only two vanB VRE isolates with a susceptible result; in general Etest® MIC results were about 1 to 2 doubling dilutions higher than MICs assessed in broth and values after the 48 h readout were 0.5 to 1 doubling dilutions higher for vanB VRE. Of all vanB type VRE only three, three and two isolates did not grow on BrillianceTM VRE agar, chromIDTM VRE agar and CHROMagarTM VRE, respectively. Permanent cross contamination via the patients' surrounding appeared as a possible risk factor for permanent VRE colonization/infection. CONCLUSIONS: Low level expression of vanB resistance may complicate a proper routine diagnostics of vanB VRE and mask an ongoing high VRE prevalence. A high inoculum and growth on rich solid media showed the highest sensitivity in identifying vanB type resistance.