Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mol Cell ; 83(24): 4524-4537.e5, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38052210

RESUMO

N-glycans act as quality control tags by recruiting lectin chaperones to assist protein maturation in the endoplasmic reticulum. The location and composition of N-glycans (glyco-code) are key to the chaperone-selection process. Serpins, a class of serine protease inhibitors, fold non-sequentially to achieve metastable active states. Here, the role of the glyco-code in assuring successful maturation and quality control of two human serpins, alpha-1 antitrypsin (AAT) and antithrombin III (ATIII), is described. We find that AAT, which has glycans near its N terminus, is assisted by early lectin chaperone binding. In contrast, ATIII, which has more C-terminal glycans, is initially helped by BiP and then later by lectin chaperones mediated by UGGT reglucosylation. UGGT action is increased for misfolding-prone disease variants, and these clients are preferentially glucosylated on their most C-terminal glycan. Our study illustrates how serpins utilize N-glycan presence, position, and composition to direct their proper folding, quality control, and trafficking.


Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Humanos , Chaperonas Moleculares/metabolismo , Lectinas/metabolismo , Polissacarídeos/química , Controle de Qualidade
2.
Proc Natl Acad Sci U S A ; 119(31): e2206103119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35901208

RESUMO

Heterologous expression of proteins is used widely for the biosynthesis of biologics, many of which are secreted from cells. In addition, gene therapy and messenger RNA (mRNA) vaccines frequently direct the expression of secretory proteins to nonnative host cells. Consequently, it is crucial to understand the maturation and trafficking of proteins in a range of host cells including muscle cells, a popular therapeutic target due to the ease of accessibility by intramuscular injection. Here, we analyzed the production efficiency for α1-antitrypsin (AAT) in Chinese hamster ovary cells, commonly used for biotherapeutic production, and myoblasts (embryonic progenitor cells of muscle cells) and compared it to the production in the major natural cells, liver hepatocytes. AAT is a target protein for gene therapy to address pathologies associated with insufficiencies in native AAT activity or production. AAT secretion and maturation were most efficient in hepatocytes. Myoblasts were the poorest of the cell types tested; however, secretion of active AAT was significantly augmented in myoblasts by treatment with the proteostasis regulator suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. These findings were extended and validated in myotubes (mature muscle cells) where AAT was transduced using an adeno-associated viral capsid transduction method used in gene therapy clinical trials. Overall, our study sheds light on a possible mechanism to enhance the efficacy of gene therapy approaches for AAT and, moreover, may have implications for the production of proteins from mRNA vaccines, which rely on the expression of viral glycoproteins in nonnative host cells upon intramuscular injection.


Assuntos
Deficiência de alfa 1-Antitripsina , alfa 1-Antitripsina , Animais , Células CHO , Cricetinae , Cricetulus , Dependovirus/genética , Terapia Genética , Hepatócitos/metabolismo , Humanos , Fibras Musculares Esqueléticas , Transdução Genética , alfa 1-Antitripsina/biossíntese , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/genética
3.
J Biol Chem ; 298(12): 102652, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36444882

RESUMO

The serpin plasminogen activator inhibitor 1 (PAI-1) spontaneously undergoes a massive structural change from a metastable and active conformation, with a solvent-accessible reactive center loop (RCL), to a stable, inactive, or latent conformation, with the RCL inserted into the central ß-sheet. Physiologically, conversion to the latent state is regulated by the binding of vitronectin, which hinders the latency transition rate approximately twofold. The molecular mechanisms leading to this rate change are unclear. Here, we investigated the effects of vitronectin on the PAI-1 latency transition using all-atom path sampling simulations in explicit solvent. In simulated latency transitions of free PAI-1, the RCL is quite mobile as is the gate, the region that impedes RCL access to the central ß-sheet. This mobility allows the formation of a transient salt bridge that facilitates the transition; this finding rationalizes existing mutagenesis results. Vitronectin binding reduces RCL and gate mobility by allosterically rigidifying structural elements over 40 Å away from the binding site, thus blocking transition to the latent conformation. The effects of vitronectin are propagated by a network of dynamically correlated residues including a number of conserved sites that were previously identified as important for PAI-1 stability. Simulations also revealed a transient pocket populated only in the vitronectin-bound state, corresponding to a cryptic drug-binding site identified by crystallography. Overall, these results shed new light on PAI-1 latency transition regulation by vitronectin and illustrate the potential of path sampling simulations for understanding functional protein conformational changes and for facilitating drug discovery.


Assuntos
Inibidor 1 de Ativador de Plasminogênio , Vitronectina , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Vitronectina/química , Modelos Moleculares , Conformação Proteica , Solventes
4.
J Chem Inf Model ; 62(24): 6602-6613, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35343689

RESUMO

Peripheral membrane proteins (PMPs) bind temporarily to cellular membranes and play important roles in signaling, lipid metabolism, and membrane trafficking. Obtaining accurate membrane-PMP affinities using experimental techniques is more challenging than for protein-ligand affinities in an aqueous solution. At the theoretical level, calculation of the standard protein-membrane binding free energy using molecular dynamics simulations remains a daunting challenge owing to the size of the biological objects at play, the slow lipid diffusion, and the large variation in configurational entropy that accompanies the binding process. To overcome these challenges, we used a computational framework relying on a series of potential-of-mean-force (PMF) calculations including a set of geometrical restraints on collective variables. This methodology allowed us to determine the standard binding free energy of a PMP to a phospholipid bilayer using an all-atom force field. Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) was chosen due to its importance as a virulence factor and owing to the host of experimental affinity data available. We computed a standard binding free energy of -8.2 ± 1.4 kcal/mol in reasonable agreement with the reported experimental values (-6.6 ± 0.2 kcal/mol). In light of the 2.3-µs separation PMF calculation, we investigated the mechanism whereby BtPI-PLC disengages from interactions with the lipid bilayer during separation. We describe how a short amphipathic helix engages in transitory interactions to ease the passage of its hydrophobes through the interfacial region upon desorption from the bilayer.


Assuntos
Bicamadas Lipídicas , Fosfolipases Tipo C , Entropia , Fosfolipases Tipo C/metabolismo , Termodinâmica , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Ligação Proteica
5.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234717

RESUMO

Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes are a virulence factor in many Gram-positive organisms. The specific activity of the Bacillus thuringiensis PI-PLC is significantly increased by adding phosphatidylcholine (PC) to vesicles composed of the substrate phosphatidylinositol, in part because the inclusion of PC reduces the apparent Kd for the vesicle binding by as much as 1000-fold when comparing PC-rich vesicles to PI vesicles. This review summarizes (i) the experimental work that localized a site on BtPI-PLC where PC is bound as a PC choline cation-Tyr-π complex and (ii) the computational work (including all-atom molecular dynamics simulations) that refined the original complex and found a second persistent PC cation-Tyr-π complex. Both complexes are critical for vesicle binding. These results have led to a model for PC functioning as an allosteric effector of the enzyme by altering the protein dynamics and stabilizing an 'open' active site conformation.


Assuntos
Fosfolipases Tipo C , Tirosina , Cátions , Colina , Lecitinas , Fosfatidilinositóis/metabolismo , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/metabolismo , Fosfolipases Tipo C/metabolismo , Fatores de Virulência
6.
Angew Chem Int Ed Engl ; 61(6): e202112033, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767659

RESUMO

The cell membrane is a dynamic and heterogeneous structure composed of distinct sub-compartments. Within these compartments, preferential interactions occur among various lipids and proteins. Currently, it is still challenging to image these short-lived membrane complexes, especially in living cells. In this work, we present a DNA-based probe, termed "DNA Zipper", which allows the membrane order and pattern of transient interactions to be imaged in living cells using standard fluorescence microscopes. By fine-tuning the length and binding affinity of DNA duplex, these probes can precisely extend the duration of membrane lipid interactions via dynamic DNA hybridization. The correlation between membrane order and the activation of T-cell receptor signaling has also been studied. These programmable DNA probes function after a brief cell incubation, which can be easily adapted to study lipid interactions and membrane order during different membrane signaling events.


Assuntos
Membrana Celular/química , Sondas de DNA/química , Corantes Fluorescentes/química , Células Madin Darby de Rim Canino/química , Animais , Sondas de DNA/síntese química , Cães , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química
7.
J Biol Chem ; 295(1): 15-33, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31712314

RESUMO

Computational simulations of protein folding can be used to interpret experimental folding results, to design new folding experiments, and to test the effects of mutations and small molecules on folding. However, whereas major experimental and computational progress has been made in understanding how small proteins fold, research on larger, multidomain proteins, which comprise the majority of proteins, is less advanced. Specifically, large proteins often fold via long-lived partially folded intermediates, whose structures, potentially toxic oligomerization, and interactions with cellular chaperones remain poorly understood. Molecular dynamics based folding simulations that rely on knowledge of the native structure can provide critical, detailed information on folding free energy landscapes, intermediates, and pathways. Further, increases in computational power and methodological advances have made folding simulations of large proteins practical and valuable. Here, using serpins that inhibit proteases as an example, we review native-centric methods for simulating the folding of large proteins. These synergistic approaches range from Go and related structure-based models that can predict the effects of the native structure on folding to all-atom-based methods that include side-chain chemistry and can predict how disease-associated mutations may impact folding. The application of these computational approaches to serpins and other large proteins highlights the successes and limitations of current computational methods and underscores how computational results can be used to inform experiments. These powerful simulation approaches in combination with experiments can provide unique insights into how large proteins fold and misfold, expanding our ability to predict and manipulate protein folding.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Animais , Humanos , Serpinas/química , Serpinas/metabolismo
8.
J Biol Chem ; 294(50): 18992-19011, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31662433

RESUMO

The protein quality control machinery of the endoplasmic reticulum (ERQC) ensures that client proteins are properly folded. ERQC substrates may be recognized as nonnative by the presence of exposed hydrophobic surfaces, free thiols, or processed N-glycans. How these features dictate which ERQC pathways engage a given substrate is poorly understood. Here, using metabolic labeling, immunoprecipitations, various biochemical assays, and the human serpin antithrombin III (ATIII) as a model, we explored the role of ERQC systems in mammalian cells. Although ATIII has N-glycans and a hydrophobic core, we found that its quality control depended solely on free thiol content. Mutagenesis of all six Cys residues in ATIII to Ala resulted in its efficient secretion even though the product was not natively folded. ATIII variants with free thiols were retained in the endoplasmic reticulum but not degraded. These results provide insight into the hierarchy of ERQC systems and reveal a fundamental vulnerability of ERQC in a case of reliance on the thiol-dependent quality control pathway.


Assuntos
Antitrombina III/metabolismo , Controle de Qualidade , Serpinas/metabolismo , Compostos de Sulfidrila/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetulus , Retículo Endoplasmático/metabolismo , Humanos
9.
Anal Chem ; 92(2): 1691-1696, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31860269

RESUMO

Fast photochemical oxidation of proteins (FPOP) is a protein footprinting technique that is being increasingly used in MS-based proteomics. FPOP is utilized to study protein-protein interactions, protein-ligand interactions, and protein conformational dynamics. This method has recently been extended to protein labeling in live cells (IC-FPOP), allowing the study of protein conformations in the complex cellular environment. Traditionally, IC-FPOP has been executed using a single cell flow system, in which hydrodynamic focusing drives cells along in a single file line, keeping the cells from clumping and thus ensuring equal exposure to the laser irradiation required for photochemical oxidation. Here, we introduce a novel platform that allows IC-FPOP to occur in a sterile incubation system complete with a mobile stage for XY movement, peristaltic pumps equipped with perfusion lines for chemical transport, and mirrors for laser beam guidance. This new system, called Platform Incubator with movable XY stage (PIXY), also utilizes software enabling automated communication between equipment and execution of the entire system. Further, comparison with a standard IC-FPOP flow system results reveal that this platform can successfully be used in lieu of the flow system while also decreasing the time to complete analysis of a single sample.


Assuntos
Incubadoras , Proteínas/química , Análise de Célula Única , Software , Hidrodinâmica , Modelos Moleculares , Oxirredução , Processos Fotoquímicos , Conformação Proteica , Análise de Célula Única/instrumentação
10.
Chem Rev ; 118(18): 8435-8473, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30148347

RESUMO

Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes from Gram-positive bacteria are secreted virulence factors that aid in downregulating host immunity. These PI-PLCs are minimalist peripheral membrane enzymes with a distorted (ßα)8 TIM barrel fold offering a conserved and stable scaffold for the conserved catalytic amino acids while membrane recognition is achieved mostly through variable loops. Decades of experimental and computational research on these enzymes have revealed the subtle interplay between molecular mechanisms of catalysis and membrane binding, leading to a semiquantitative model for how they find, bind, and cleave their respective substrates on host cell membranes. Variations in sequence and structure of their membrane binding sites may correlate with how enzymes from different Gram-positive bacteria search for their particular targets on the membrane. Detailed molecular characterization of protein-lipid interactions have been aided by cutting-edge methods ranging from 31P field-cycling NMR relaxometry to monitor protein-induced changes in phospholipid dynamics to molecular dynamics simulations to elucidate the roles of electrostatic and cation-π interactions in lipid binding to single molecule fluorescence measurements of dynamic interactions between PI-PLCs and vesicles. This toolkit is readily applicable to other peripheral membrane proteins including orthologues in Gram-negative bacteria and more recently discovered eukaryotic minimalist PI-PLCs.


Assuntos
Bactérias/enzimologia , Fosfatidilinositol Diacilglicerol-Liase/química , Fosfatidilinositol Diacilglicerol-Liase/metabolismo , Fosfatidilinositóis/metabolismo , Regulação Alostérica/fisiologia , Biocatálise , Domínio Catalítico , Membrana Celular/metabolismo , Cinética , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
11.
Environ Sci Technol ; 54(8): 5159-5166, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32182039

RESUMO

Most bacteria in natural and engineered environments grow and exist in biofilms. Recent investigations have shown that nanoparticles (NPs) interact with environmental biofilms, but these interactions are still not well characterized. Extracellular polymeric substances (EPS) are polymers secreted by bacteria to establish the functional and structural integrity of biofilms, and EPS porosity is a major contributor to NP access to and diffusion in biofilms. We used a synergistic combination of total internal reflection fluorescence microscopy and image correlation spectroscopy to monitor and map diffusion of fluorescent NPs in alginate yielding a detailed picture of the heterogeneous structure and connectivity of pores within a model EPS polymer. Using different sizes (20, 100, and 200 nm) of carboxylated polystyrene NPs, we examined how NP diffusive behaviors change as a result of calcium-induced cross-linking of the alginate matrix. This study reveals that cross-linking decreases NP diffusion coefficients and pore accessibility in an NP size-dependent manner and that NP movement through alginate matrices is anisotropic and heterogeneous. These results on heterogeneous and size-dependent movement within biofilms have important implications for future studies and simulations of NP-biofilm interactions.


Assuntos
Nanopartículas , Poliestirenos , Alginatos , Biofilmes , Tamanho da Partícula
12.
Proc Natl Acad Sci U S A ; 113(23): 6484-9, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27222580

RESUMO

Although proteins generally fold to their thermodynamically most stable state, some metastable proteins populate higher free energy states. Conformational changes from metastable higher free energy states to lower free energy states with greater stability can then generate the work required to perform physiologically important functions. However, how metastable proteins fold to these higher free energy states in the cell and avoid more stable but inactive conformations is poorly understood. The serpin family of metastable protease inhibitors uses large conformational changes that are downhill in free energy to inhibit target proteases by pulling apart the protease active site. The serpin antithrombin III (ATIII) targets thrombin and other proteases involved in blood coagulation, and ATIII misfolding can thus lead to thrombosis and other diseases. ATIII has three disulfide bonds, two near the N terminus and one near the C terminus. Our studies of ATIII in-cell folding reveal a surprising, biased order of disulfide bond formation, with early formation of the C-terminal disulfide, before formation of the N-terminal disulfides, critical for folding to the active, metastable state. Early folding of the predominantly ß-sheet ATIII domain in this two-domain protein constrains the reactive center loop (RCL), which contains the protease-binding site, ensuring that the RCL remains accessible. N-linked glycans and carbohydrate-binding molecular chaperones contribute to the efficient folding and secretion of functional ATIII. The inability of a number of disease-associated ATIII variants to navigate the folding reaction helps to explain their disease phenotypes.


Assuntos
Antitrombina III/química , Animais , Antitrombina III/genética , Células CHO , Cricetulus , Dissulfetos/química , Humanos , Mutação , Conformação Proteica , Dobramento de Proteína
13.
Biophys J ; 114(9): 2083-2094, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742402

RESUMO

Protein misfolding is implicated in many diseases, including serpinopathies. For the canonical inhibitory serpin α1-antitrypsin, mutations can result in protein deficiencies leading to lung disease, and misfolded mutants can accumulate in hepatocytes, leading to liver disease. Using all-atom simulations based on the recently developed bias functional algorithm, we elucidate how wild-type α1-antitrypsin folds and how the disease-associated S (Glu264Val) and Z (Glu342Lys) mutations lead to misfolding. The deleterious Z mutation disrupts folding at an early stage, whereas the relatively benign S mutant shows late-stage minor misfolding. A number of suppressor mutations ameliorate the effects of the Z mutation, and simulations on these mutants help to elucidate the relative roles of steric clashes and electrostatic interactions in Z misfolding. These results demonstrate a striking correlation between atomistic events and disease severity and shine light on the mechanisms driving chains away from their correct folding routes.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Mutação Puntual , Dobramento de Proteína , alfa 1-Antitripsina/química , Proteínas Mutantes/genética , Conformação Proteica , alfa 1-Antitripsina/genética
14.
J Biol Chem ; 292(40): 16787-16801, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28842497

RESUMO

Upon activation by the Gq family of Gα subunits, Gßγ subunits, and some Rho family GTPases, phospholipase C-ß (PLC-ß) isoforms hydrolyze phosphatidylinositol 4,5-bisphosphate to the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. PLC-ß isoforms also function as GTPase-activating proteins, potentiating Gq deactivation. To elucidate the mechanism of this mutual regulation, we measured the thermodynamics and kinetics of PLC-ß3 binding to Gαq FRET and fluorescence correlation spectroscopy, two physically distinct methods, both yielded Kd values of about 200 nm for PLC-ß3-Gαq binding. This Kd is 50-100 times greater than the EC50 for Gαq-mediated PLC-ß3 activation and for the Gαq GTPase-activating protein activity of PLC-ß. The measured Kd was not altered either by the presence of phospholipid vesicles, phosphatidylinositol 4,5-bisphosphate and Ca2+, or by the identity of the fluorescent labels. FRET-based kinetic measurements were also consistent with a Kd of 200 nm We determined that PLC-ß3 hysteresis, whereby PLC-ß3 remains active for some time following either Gαq-PLC-ß3 dissociation or PLC-ß3-potentiated Gαq deactivation, is not sufficient to explain the observed discrepancy between EC50 and Kd These results indicate that the mechanism by which Gαq and PLC-ß3 mutually regulate each other is far more complex than a simple, two-state allosteric model and instead is probably kinetically determined.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Modelos Químicos , Fosfolipase C beta/química , Regulação Alostérica/fisiologia , Cálcio/química , Cálcio/metabolismo , Ativação Enzimática , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Ligação Proteica
15.
Biochim Biophys Acta ; 1864(6): 697-705, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26976751

RESUMO

The broad-range phospholipase C (PLC) from Listeria monocytogenes has been expressed using an intein expression system and characterized. This zinc metalloenzyme, similar to the homologous enzyme from Bacillus cereus, targets a wide range of lipid substrates. With monomeric substrates, the length of the hydrophobic acyl chain has significant impact on enzyme efficiency by affecting substrate affinity (Km). Based on a homology model of the enzyme to the B. cereus protein, several active site residue mutations were generated. While this PLC shares many of the mechanistic characteristics of the B. cereus PLC, a major difference is that the L. monocytogenes enzyme displays an acidic pH optimum regardless of substrate status (monomer, micelle, or vesicle). This unusual behavior might be advantageous for its role in the pathogenicity of L. monocytogenes.


Assuntos
Ácidos/metabolismo , Listeria monocytogenes/enzimologia , Fosfolipases Tipo C/metabolismo , Domínio Catalítico , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/metabolismo
16.
Proc Natl Acad Sci U S A ; 111(43): 15414-9, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313058

RESUMO

Protease inhibition by serpins requires a large conformational transition from an active, metastable state to an inactive, stable state. Similar reactions can also occur in the absence of proteases, and these latency transitions take hours, making their time scales many orders of magnitude larger than are currently accessible using conventional molecular dynamics simulations. Using a variational path sampling algorithm, we simulated the entire serpin active-to-latent transition in all-atom detail with a physically realistic force field using a standard computing cluster. These simulations provide a unifying picture explaining existing experimental data for the latency transition of the serpin plasminogen activator inhibitor-1 (PAI-1). They predict a long-lived intermediate that resembles a previously proposed, partially loop-inserted, prelatent state; correctly predict the effects of PAI-1 mutations on the kinetics; and provide a potential means to identify ligands able to accelerate the latency transition. Interestingly, although all of the simulated PAI-1 variants readily access the prelatent intermediate, this conformation is not populated in the active-to-latent transition of another serpin, α1-antitrypsin, which does not readily go latent. Thus, these simulations also help elucidate why some inhibitory serpin families are more conformationally labile than others.


Assuntos
Modelos Moleculares , Serpinas/química , Sequência de Aminoácidos , Azetidinas/química , Azetidinas/farmacologia , Cinética , Dados de Sequência Molecular , Inibidor 1 de Ativador de Plasminogênio/química , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Pirimidinonas/química , Pirimidinonas/farmacologia , Termodinâmica
17.
Biophys J ; 110(6): 1367-78, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27028646

RESUMO

Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) is a secreted virulence factor that binds specifically to phosphatidylcholine (PC) bilayers containing negatively charged phospholipids. BtPI-PLC carries a negative net charge and its interfacial binding site has no obvious cluster of basic residues. Continuum electrostatic calculations show that, as expected, nonspecific electrostatic interactions between BtPI-PLC and membranes vary as a function of the fraction of anionic lipids present in the bilayers. Yet they are strikingly weak, with a calculated ΔGel below 1 kcal/mol, largely due to a single lysine (K44). When K44 is mutated to alanine, the equilibrium dissociation constant for small unilamellar vesicles increases more than 50 times (∼2.4 kcal/mol), suggesting that interactions between K44 and lipids are not merely electrostatic. Comparisons of molecular-dynamics simulations performed using different lipid compositions reveal that the bilayer composition does not affect either hydrogen bonds or hydrophobic contacts between the protein interfacial binding site and bilayers. However, the occupancies of cation-π interactions between PC choline headgroups and protein tyrosines vary as a function of PC content. The overall contribution of basic residues to binding affinity is also context dependent and cannot be approximated by a rule-of-thumb value because these residues can contribute to both nonspecific electrostatic and short-range protein-lipid interactions. Additionally, statistics on the distribution of basic amino acids in a data set of membrane-binding domains reveal that weak electrostatics, as observed for BtPI-PLC, might be a less unusual mechanism for peripheral membrane binding than is generally thought.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Eletricidade Estática , Aminoácidos/química , Bacillus thuringiensis/metabolismo , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Lipídeos/química , Simulação de Dinâmica Molecular , Fosfatidilgliceróis/química , Fosfoinositídeo Fosfolipase C/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Termodinâmica
18.
Biochemistry ; 55(12): 1918-28, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26937685

RESUMO

Haptoglobin (Hp) binds free hemoglobin (Hb) dimers to prevent negative consequences of Hb circulation in the extracellular environment. Although both monomeric Hb and myoglobin (Mb) species also present potential risks, their interactions with Hp have not been extensively studied. Mb is homologous to both the α- and ß-chains of Hb and shares many conserved Hb/Hp interface residues, yet whether Hp binds Mb remains unclear. To address this, computational biology tools were used to predict the interactions required for Hp to bind monomeric globins, and the predicted association was tested using native electrospray ionization mass spectrometry (ESI-MS). The Hb/Hp crystal structure was used as the template to create molecular models of two Mb molecules bound to an Hp heterodimer (Mb2/Hp). Molecular modeling suggests that Mb can bind at the Hp α-chain binding site, where 73% of the globin/Hp interactions are conserved. By contrast, several ionic ß-chain residues involved in complementary electrostatic interactions with Hp correspond to residues with the opposite charge in Mb, suggesting unfavorable electrostatic Hp/Mb interactions at the ß-chain binding site. As shown by native ESI-MS, isolated monomeric Hbα subunits can form 2:1 complexes with Hp heterotetramers in the absence of Hb ß-chains. Native ESI-MS also confirmed that Mb can bind to Hp heterotetramers in solution with stoichiometries of 1:1 and 2:1 at physiological pH and ionic strength. The affinity of Hp for Mb appears to be diminished relative to that of Hb α-chains. Our in silico experiments rationalize this change and demonstrate that molecular modeling of protein/protein interactions is a valuable aid for MS experiments.


Assuntos
Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Modelos Moleculares , Mioglobina/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Haptoglobinas/química , Haptoglobinas/genética , Hemoglobinas/química , Hemoglobinas/genética , Humanos , Dados de Sequência Molecular , Mioglobina/química , Mioglobina/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Suínos
19.
J Biol Chem ; 290(31): 19334-42, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26092728

RESUMO

Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins.


Assuntos
Proteínas de Bactérias/química , Fenilalanina/análogos & derivados , Fenilalanina/química , Fosfoinositídeo Fosfolipase C/química , Tirosina/análogos & derivados , Sequência de Aminoácidos , Cátions , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Lipídeos de Membrana/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Staphylococcus aureus/enzimologia , Tirosina/química
20.
Nat Chem Biol ; 10(11): 884-91, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25325699

RESUMO

Evolutionary pressure for protein function leads to unavoidable sampling of conformational states that are at risk of misfolding and aggregation. The resulting tension between functional requirements and the risk of misfolding and/or aggregation in the evolution of proteins is becoming more and more apparent. One outcome of this tension is sensitivity to mutation, in which only subtle changes in sequence that may be functionally advantageous can tip the delicate balance toward protein aggregation. Similarly, increasing the concentration of aggregation-prone species by reducing the ability to control protein levels or compromising protein folding capacity engenders increased risk of aggregation and disease. In this Perspective, we describe examples that epitomize the tension between protein functional energy landscapes and aggregation risk. Each case illustrates how the energy landscapes for the at-risk proteins are sculpted to enable them to perform their functions and how the risks of aggregation are minimized under cellular conditions using a variety of compensatory mechanisms.


Assuntos
Proteínas/química , Proteínas/metabolismo , Humanos , Modelos Moleculares , Agregação Patológica de Proteínas , Conformação Proteica , Dobramento de Proteína , Proteínas/genética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA