Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
RNA ; 22(6): 883-95, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27095027

RESUMO

Synthesis and regulation of catecholamine neurotransmitters in the central nervous system are implicated in the pathogenesis of a number of neuropsychiatric disorders. To identify factors that regulate the presynaptic synthesis of catecholamines, we tested the hypothesis that the rate-limiting enzyme of the catecholamine biosynthetic pathway, tyrosine hydroxylase (TH), is locally synthesized in axons and presynaptic nerve terminals of noradrenergic neurons. To isolate pure axonal mRNA and protein, rat superior cervical ganglion sympathetic neurons were cultured in compartmentalized Campenot chambers. qRT-PCR and RNA in situ hybridization analyses showed that TH mRNA is present in distal axons. Colocalization experiments with nerve terminal marker proteins suggested that both TH mRNA and protein localize in regions of the axon that resemble nerve terminals (i.e., synaptic boutons). Analysis of polysome-bound RNA showed that TH mRNA is present in polysomes isolated from distal axons. Metabolic labeling of axonally synthesized proteins labeled with the methionine analog, L-azidohomoalanine, showed that TH is locally synthesized in axons. Moreover, the local transfection and translation of exogenous TH mRNA into distal axons facilitated axonal dopamine synthesis. Finally, using chimeric td-Tomato-tagged constructs, we identified a sequence element within the TH 3'UTR that is required for the axonal localization of the reporter mRNA. Taken together, our results provide the first direct evidence that TH mRNA is trafficked to the axon and that the mRNA is locally translated. These findings raise the interesting possibility that the biosynthesis of the catecholamine neurotransmitters is locally regulated in the axon and/or presynaptic nerve terminal.


Assuntos
Axônios/enzimologia , Neurônios/enzimologia , RNA Mensageiro/genética , Sistema Nervoso Simpático/citologia , Tirosina 3-Mono-Oxigenase/genética , Regiões 3' não Traduzidas , Animais , Dopamina/biossíntese , Ratos , Ratos Sprague-Dawley
2.
J Neurosci ; 33(17): 7165-74, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616526

RESUMO

Axonal protein synthesis is a complex process involving selective mRNA localization and translational regulation. In this study, using in situ hybridization and metabolic labeling, we show that the mRNAs encoding eukaryotic translation initiation factors eIF2B2 and eIF4G2 are present in the axons of rat sympathetic neurons and are locally translated. We also report that a noncoding microRNA, miR16, modulates the axonal expression of eIF2B2 and eIF4G2. Transfection of axons with precursor miR16 and anti-miR16 showed that local miR16 levels modulated axonal eIF2B2 and eIF4G2 mRNA and protein levels, as well as axon outgrowth. siRNA-mediated knock-down of axonal eIF2B2 and eIF4G2 mRNA also resulted in a significant decrease in axonal eIF2B2 and eIF4G2 protein. Moreover, results of metabolic labeling studies showed that downregulation of axonal eIF2B2 and eIF4G2 expression also inhibited local protein synthesis and axon growth. Together, these data provide evidence that miR16 mediates axonal growth, at least in part, by regulating the local protein synthesis of eukaryotic translation initiation factors eIF2B2 and eIF4G2 in the axon.


Assuntos
Fibras Adrenérgicas/metabolismo , Axônios/metabolismo , Fator de Iniciação 2B em Eucariotos/biossíntese , Fator de Iniciação Eucariótico 4G/biossíntese , Biossíntese de Proteínas/fisiologia , Fibras Adrenérgicas/fisiologia , Animais , Axônios/fisiologia , Células Cultivadas , Regulação para Baixo/fisiologia , Fator de Iniciação 2B em Eucariotos/antagonistas & inibidores , Fator de Iniciação 2B em Eucariotos/fisiologia , Fator de Iniciação Eucariótico 4G/antagonistas & inibidores , Fator de Iniciação Eucariótico 4G/fisiologia , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Gânglio Cervical Superior/metabolismo , Gânglio Cervical Superior/fisiologia
3.
Mol Cell Neurosci ; 49(3): 263-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22209705

RESUMO

To date, it has been demonstrated that axonal mRNA populations contain a large number of nuclear-encoded mRNAs for mitochondrial proteins. Here, we report that the mRNA encoding ATP synthase subunit 9 (ATP5G1), a key component of Complex V of the oxidative phosphorylation chain, is present in the axons of rat primary sympathetic neurons, as judged by in situ hybridization and qRT-PCR methodology. Results of metabolic labeling studies establish that this nuclear-encoded mRNA is translated in the axon. The siRNA-mediated knock-down of axonal ATP5G1 mRNA resulted in a significant reduction of axonal ATP5G1 protein and ATP levels. Silencing of local ATP5G1 expression enhanced the production of local reactive oxygen species (ROS). Importantly, reduction in the levels of ATP5G1 expression resulted in a marked attenuation in the rate of elongation of the axon. Exposure of the distal axons to nordihydroguaiaretic acid (NDGA), a ROS scavenger, mitigated the reduction in the rate of axon elongation observed after knock-down of ATP5G1. Taken together, these data call attention to the key regulatory role that local translation of nuclear-encoded mitochondrial mRNAs plays in energy metabolism and growth of the axon.


Assuntos
Trifosfato de Adenosina/metabolismo , Axônios/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/genética , Animais , Axônios/patologia , Células Cultivadas , Mitocôndrias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Sci Rep ; 11(1): 14462, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262056

RESUMO

Peripheral Nerve Injury (PNI) represents a major clinical and economic burden. Despite the ability of peripheral neurons to regenerate their axons after an injury, patients are often left with motor and/or sensory disability and may develop chronic pain. Successful regeneration and target organ reinnervation require comprehensive transcriptional changes in both injured neurons and support cells located at the site of injury. The expression of most of the genes required for axon growth and guidance and for synapsis formation is repressed by a single master transcriptional regulator, the Repressor Element 1 Silencing Transcription factor (REST). Sustained increase of REST levels after injury inhibits axon regeneration and leads to chronic pain. As targeting of transcription factors is challenging, we tested whether modulation of REST activity could be achieved through knockdown of carboxy-terminal domain small phosphatase 1 (CTDSP1), the enzyme that stabilizes REST by preventing its targeting to the proteasome. To test whether knockdown of CTDSP1 promotes neurotrophic factor expression in both support cells located at the site of injury and in peripheral neurons, we transfected mesenchymal progenitor cells (MPCs), a type of support cells that are present at high concentrations at the site of injury, and dorsal root ganglion (DRG) neurons with REST or CTDSP1 specific siRNA. We quantified neurotrophic factor expression by RT-qPCR and Western blot, and brain-derived neurotrophic factor (BDNF) release in the cell culture medium by ELISA, and we measured neurite outgrowth of DRG neurons in culture. Our results show that CTDSP1 knockdown promotes neurotrophic factor expression in both DRG neurons and the support cells MPCs, and promotes DRG neuron regeneration. Therapeutics targeting CTDSP1 activity may, therefore, represent a novel epigenetic strategy to promote peripheral nerve regeneration after PNI by promoting the regenerative program repressed by injury-induced increased levels of REST in both neurons and support cells.


Assuntos
Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Fosfoproteínas Fosfatases/genética , Proteínas Repressoras/metabolismo , Animais , Axônios/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Humanos , Células-Tronco Mesenquimais , Fatores de Crescimento Neural/metabolismo , Crescimento Neuronal/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Nervo Isquiático/lesões
5.
Mol Cell Neurosci ; 42(2): 102-115, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19520167

RESUMO

We have developed a compartmentalised culture model for the purification of axonal mRNA from embryonic, neonatal and adult rat dorsal root ganglia. This mRNA was used un-amplified for RT-qPCR. We assayed for the presence of axonal mRNAs encoding molecules known to be involved in axon growth and guidance. mRNAs for beta-actin, beta-tubulin, and several molecules involved in the control of actin dynamics and signalling during axon growth were found, but mRNAs for microtubule-associated proteins, integrins and cell surface adhesion molecules were absent. Quantification of beta-actin mRNA by means of qPCR showed that the transcript is present at the same level in embryonic, newborn and adult axons. Using the photoconvertible reporter Kaede we showed that there is local translation of beta-actin in axons, the rate being increased by axotomy. Knock down of beta-actin mRNA by RNAi inhibited the regeneration of new axon growth cones after in vitro axotomy, indicating that local translation of actin-related molecules is important for successful axon regeneration.


Assuntos
Axônios/fisiologia , Gânglios Espinais , Cones de Crescimento/fisiologia , Regeneração Nervosa/fisiologia , RNA Mensageiro/metabolismo , Actinas/genética , Animais , Animais Recém-Nascidos , Axotomia , Citoesqueleto/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptores de Superfície Celular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transdução de Sinais/genética , Técnicas de Cultura de Tecidos
6.
Dev Neurobiol ; 74(3): 333-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24151253

RESUMO

Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3' untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Overexpression of a chimeric reporter mRNA with the COXIV zipcode competed with the axonal trafficking of endogenous COXIV mRNA, and led to attenuated axon growth in SCG neurons. Here, we show that exogenous expression of the COXIV zipcode in cultured SCG neurons also results in the reduction of local ATP levels and increases levels of reactive oxygen species (ROS) in the axon. We took advantage of this "competition" phenotype to investigate the in vivo significance of axonal transport of COXIV mRNA. Toward this end, we generated transgenic mice expressing a fluorescent reporter fused to COXIV zipcode under a forebrain-specific promoter. Immunohistological analyses and RT-PCR analyses of RNA from the transgenic mouse brain showed expression of the reporter in the deep layer neurons in the pre-frontal and frontal cortex. Consistent with the in vitro studies, we observed increased ROS levels in neurons of these transgenic animals. A battery of behavioral tests on transgenic mice expressing the COXIV zipcode revealed an "anxiety-like" behavioral phenotype, suggesting an important role for axonal trafficking of nuclear-encoded mitochondrial mRNAs in neuronal physiology and animal behavior.


Assuntos
Ansiedade/fisiopatologia , Transporte Axonal , Axônios/metabolismo , Mitocôndrias/fisiologia , Neurônios/fisiologia , RNA Mensageiro/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/fisiologia , Células Cultivadas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Comportamento Exploratório/fisiologia , Lobo Frontal/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mitocondrial , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Estresse Psicológico
7.
Regen Med ; 3(6): 907-23, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18947312

RESUMO

The glial scar that forms after an injury to the CNS contains molecules that are inhibitory to axon growth. Understanding of the mechanisms of inhibition has allowed the development of therapeutic strategies aimed at promoting axon regeneration. Promising results have been obtained in animal models, and some therapies are undergoing clinical trials. This offers great hope for achievement of functional recovery after CNS injury.


Assuntos
Axônios/fisiologia , Sistema Nervoso Central/fisiologia , Espaço Extracelular/metabolismo , Regeneração Nervosa , Doenças do Sistema Nervoso/terapia , Animais , Humanos , Bainha de Mielina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA