Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(38): 17496-17515, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121382

RESUMO

Iron-sulfur (Fe-S) clusters are prosthetic groups of proteins biosynthesized on scaffold proteins by highly conserved multi-protein machineries. Biosynthesis of Fe-S clusters into the ISCU scaffold protein is initiated by ferrous iron insertion, followed by sulfur acquisition, via a still elusive mechanism. Notably, whether iron initially binds to the ISCU cysteine-rich assembly site or to a cysteine-less auxiliary site via N/O ligands remains unclear. We show here by SEC, circular dichroism (CD), and Mössbauer spectroscopies that iron binds to the assembly site of the monomeric form of prokaryotic and eukaryotic ISCU proteins via either one or two cysteines, referred to the 1-Cys and 2-Cys forms, respectively. The latter predominated at pH 8.0 and correlated with the Fe-S cluster assembly activity, whereas the former increased at a more acidic pH, together with free iron, suggesting that it constitutes an intermediate of the iron insertion process. Iron not binding to the assembly site was non-specifically bound to the aggregated ISCU, ruling out the existence of a structurally defined auxiliary site in ISCU. Characterization of the 2-Cys form by site-directed mutagenesis, CD, NMR, X-ray absorption, Mössbauer, and electron paramagnetic resonance spectroscopies showed that the iron center is coordinated by four strictly conserved amino acids of the assembly site, Cys35, Asp37, Cys61, and His103, in a tetrahedral geometry. The sulfur receptor Cys104 was at a very close distance and apparently bound to the iron center when His103 was missing, which may enable iron-dependent sulfur acquisition. Altogether, these data provide the structural basis to elucidate the Fe-S cluster assembly process and establish that the initiation of Fe-S cluster biosynthesis by insertion of a ferrous iron in the assembly site of ISCU is a conserved mechanism.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Cisteína/química , Proteínas de Escherichia coli/química , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Compostos de Sulfonilureia , Enxofre/metabolismo
2.
Front Neurosci ; 16: 838335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310092

RESUMO

Friedreich's ataxia (FRDA) is the most prevalent autosomic recessive ataxia and is associated with a severe cardiac hypertrophy and less frequently diabetes. It is caused by mutations in the gene encoding frataxin (FXN), a small mitochondrial protein. The primary consequence is a defective expression of FXN, with basal protein levels decreased by 70-98%, which foremost affects the cerebellum, dorsal root ganglia, heart and liver. FXN is a mitochondrial protein involved in iron metabolism but its exact function has remained elusive and highly debated since its discovery. At the cellular level, FRDA is characterized by a general deficit in the biosynthesis of iron-sulfur (Fe-S) clusters and heme, iron accumulation and deposition in mitochondria, and sensitivity to oxidative stress. Based on these phenotypes and the proposed ability of FXN to bind iron, a role as an iron storage protein providing iron for Fe-S cluster and heme biosynthesis was initially proposed. However, this model was challenged by several other studies and it is now widely accepted that FXN functions primarily in Fe-S cluster biosynthesis, with iron accumulation, heme deficiency and oxidative stress sensitivity appearing later on as secondary defects. Nonetheless, the biochemical function of FXN in Fe-S cluster biosynthesis is still debated. Several roles have been proposed for FXN: iron chaperone, gate-keeper of detrimental Fe-S cluster biosynthesis, sulfide production stimulator and sulfur transfer accelerator. A picture is now emerging which points toward a unique function of FXN as an accelerator of a key step of sulfur transfer between two components of the Fe-S cluster biosynthetic complex. These findings should foster the development of new strategies for the treatment of FRDA. We will review here the latest discoveries on the biochemical function of frataxin and the implication for a potential therapeutic treatment of FRDA.

3.
Methods Mol Biol ; 2353: 191-205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34292551

RESUMO

Cysteine-bound persulfides (Cys-SSH) in proteins are sulfur carrier intermediates in the synthesis of essential cofactors such as iron-sulfur clusters, molybdenum cofactor, vitamin (thiamine), and thionucleosides (thiolated tRNA). Protein-bound persulfides are also used for signaling purposes as a carrier of the "H2S" signal. Several methods have been developed to detect and quantify cysteine-bound persulfides in protein and monitor their exchange. The main challenge in developing these techniques is to discriminate persulfidated cysteine from cysteine and other cysteine modifications. It is also critical to develop ratiometric methods to quantify the level of persulfidation in the protein of interest. We describe here a ratiometric method to label and quantify protein-bound persulfides relying on alkylation and gel-shift assays. This method is based on the derivation of cysteine and persulfides with "heavy" alkylating agents, followed by specific cleavage of the sulfur-sulfur bond of the alkylated persulfide by a reducing agent and separation of the alkylated species by electrophoresis. A persulfide is thus revealed by the appearance of a species lacking one alkylation unit under reducing conditions. We call this alkylation-reduction band-shift (ARBS) assay. Moreover, the quantification of the bands corresponding to the persulfidated and non-persulfidated species in the same lane provides a ratiometric quantification allowing determination of the level of persulfidation of individual cysteine. Other cysteine modifications such as disulfides, sulfenic, sulfinic, sulfonic acids, nitrosothiols, and sulfenamides preclude alkylation. Thus, they may appear as false positives, but they are ruled out by the analysis under nonreducing conditions since these species do not behave as persulfides under these conditions.


Assuntos
Ensaio de Desvio de Mobilidade Eletroforética , Alquilação , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Cisteína/metabolismo , Dissulfetos , Proteínas , Sulfetos , Enxofre , Fatores de Tempo
4.
Nat Commun ; 10(1): 3566, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395877

RESUMO

Iron-sulfur (Fe-S) clusters are essential protein cofactors whose biosynthetic defects lead to severe diseases among which is Friedreich's ataxia caused by impaired expression of frataxin (FXN). Fe-S clusters are biosynthesized on the scaffold protein ISCU, with cysteine desulfurase NFS1 providing sulfur as persulfide and ferredoxin FDX2 supplying electrons, in a process stimulated by FXN but not clearly understood. Here, we report the breakdown of this process, made possible by removing a zinc ion in ISCU that hinders iron insertion and promotes non-physiological Fe-S cluster synthesis from free sulfide in vitro. By binding zinc-free ISCU, iron drives persulfide uptake from NFS1 and allows persulfide reduction into sulfide by FDX2, thereby coordinating sulfide production with its availability to generate Fe-S clusters. FXN stimulates the whole process by accelerating persulfide transfer. We propose that this reconstitution recapitulates physiological conditions which provides a model for Fe-S cluster biosynthesis, clarifies the roles of FDX2 and FXN and may help develop Friedreich's ataxia therapies.


Assuntos
Ferredoxinas/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Sulfetos/metabolismo , Liases de Carbono-Enxofre/metabolismo , Ferredoxinas/isolamento & purificação , Ataxia de Friedreich/patologia , Ferro/metabolismo , Proteínas de Ligação ao Ferro/isolamento & purificação , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Zinco/metabolismo , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA