Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Infect Dis ; 220(11): 1738-1749, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30668735

RESUMO

The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.


Assuntos
Genótipo , Malária Vivax/parasitologia , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Seleção Genética , Adaptação Biológica , Adolescente , Animais , Criança , Pré-Escolar , Etiópia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Plasmodium vivax/classificação , Prevalência
2.
Malar J ; 14: 525, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26702611

RESUMO

BACKGROUND: Chloroquine (CQ) is the first-line treatment for vivax malaria in Ethiopia, but there is evidence for its declining efficacy. Defining the extent and regional distribution of CQ resistance is critical to ensure optimal treatment guidelines. This study aimed to provide data on the therapeutic efficacy of CQ against Plasmodium vivax malaria in southern Ethiopia. METHODS: Patients with P. vivax mono-infection aged between 8 months and 65 years were enrolled in a clinical efficacy trial. The study was conducted at four sites in southern Ethiopia. Study participants were treated with a supervised course of CQ (25 mg/kg over three consecutive days), followed by weekly blood film examination and clinical assessment for 28 days. CQ blood concentrations were not assessed. The primary endpoint was the risk of failure at 28 days by survival analysis. RESULTS: Between May 2010 and December 2013, 288 patients were enrolled in the study (n = 89 in Shele, n = 52 in Guba, n = 57 in Batu and n = 90 in Shone). Baseline characteristics varied significantly between sites. In total 34 (11.8%) patients were censored during follow up (five with Plasmodium falciparum parasitaemia and 29 lost to follow up). Two (0.7%) patients experienced early treatment failure and 23 (8%) late treatment failure. The overall risk of recurrence by day 28 was 9.4% (95% CI 6.4-13.6%) with site-specific estimates of 3.8% (95% CI 1.2-11.3) for Shele, 21.9% (95% CI 12.2-36.1) for Guba, 5.9% (95% CI 1.9-17.3) for Batu and 9.2% (95% CI 4.5-17.6) for Shone. CONCLUSION: There is evidence of reduced CQ efficacy across three of the four study sites, with the degree of resistance severe enough in Guba to suggest that review of treatment policy may be warranted.


Assuntos
Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Plasmodium vivax/efeitos dos fármacos , Adolescente , Adulto , Idoso , Antimaláricos/farmacologia , Criança , Pré-Escolar , Cloroquina/farmacologia , Resistência a Medicamentos , Etiópia/epidemiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Parasitemia/tratamento farmacológico , Parasitemia/epidemiologia , Falha de Tratamento , Adulto Jovem
3.
Sci Rep ; 13(1): 20788, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012191

RESUMO

Ethiopia has the greatest burden of Plasmodium vivax in Africa, but little is known about the epidemiological landscape of parasites across the country. We analysed the genomic diversity of 137 P. vivax isolates collected nine Ethiopian districts from 2012 to 2016. Signatures of selection were detected by cross-country comparisons with isolates from Thailand (n = 104) and Indonesia (n = 111), representing regions with low and high chloroquine resistance respectively. 26% (35/137) of Ethiopian infections were polyclonal, and 48.5% (17/35) of these comprised highly related clones (within-host identity-by-descent > 25%), indicating frequent co-transmission and superinfection. Parasite gene flow between districts could not be explained entirely by geographic distance, with economic and cultural factors hypothesised to have an impact on connectivity. Amplification of the duffy binding protein gene (pvdbp1) was prevalent across all districts (16-75%). Cross-population haplotype homozygosity revealed positive selection in a region proximal to the putative chloroquine resistance transporter gene (pvcrt-o). An S25P variant in amino acid transporter 1 (pvaat1), whose homologue has recently been implicated in P. falciparum chloroquine resistance evolution, was prevalent in Ethiopia (96%) but not Thailand or Indonesia (35-53%). The genomic architecture in Ethiopia highlights circulating variants of potential public health concern in an endemic setting with evidence of stable transmission.


Assuntos
Antimaláricos , Malária Falciparum , Malária Vivax , Humanos , Plasmodium vivax , Malária Vivax/parasitologia , Etiópia/epidemiologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Malária Falciparum/parasitologia , Genômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Plasmodium falciparum/metabolismo
4.
Commun Biol ; 5(1): 1411, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564617

RESUMO

Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.


Assuntos
Malária Vivax , Malária , Humanos , Malária Vivax/diagnóstico , Malária Vivax/genética , Funções Verossimilhança , Plasmodium vivax/genética , Internet
5.
PLoS Negl Trop Dis ; 14(10): e0008234, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33044985

RESUMO

Plasmodium vivax malaria is much less common in Africa than the rest of the world because the parasite relies primarily on the Duffy antigen/chemokine receptor (DARC) to invade human erythrocytes, and the majority of Africans are Duffy negative. Recently, there has been a dramatic increase in the reporting of P. vivax cases in Africa, with a high number of them being in Duffy negative individuals, potentially indicating P. vivax has evolved an alternative invasion mechanism that can overcome Duffy negativity. Here, we analyzed single nucleotide polymorphism (SNP) and copy number variation (CNV) in Whole Genome Sequence (WGS) data from 44 P. vivax samples isolated from symptomatic malaria patients in southwestern Ethiopia, where both Duffy positive and Duffy negative individuals are found. A total of 123,711 SNPs were detected, of which 22.7% were nonsynonymous and 77.3% were synonymous mutations. The largest number of SNPs were detected on chromosomes 9 (24,007 SNPs; 19.4% of total) and 10 (16,852 SNPs, 13.6% of total). There were particularly high levels of polymorphism in erythrocyte binding gene candidates including merozoite surface protein 1 (MSP1) and merozoite surface protein 3 (MSP3.5, MSP3.85 and MSP3.9). Two genes, MAEBL and MSP3.8 related to immunogenicity and erythrocyte binding function were detected with significant signals of positive selection. Variation in gene copy number was also concentrated in genes involved in host-parasite interactions, including the expansion of the Duffy binding protein gene (PvDBP) on chromosome 6 and MSP3.11 on chromosome 10. Based on the phylogeny constructed from the whole genome sequences, the expansion of these genes was an independent process among the P. vivax lineages in Ethiopia. We further inferred transmission patterns of P. vivax infections among study sites and showed various levels of gene flow at a small geographical scale. The genomic features of P. vivax provided baseline data for future comparison with those in Duffy-negative individuals and allowed us to develop a panel of informative Single Nucleotide Polymorphic markers diagnostic at a micro-geographical scale.


Assuntos
Malária Vivax/parasitologia , Plasmodium vivax/genética , Sequenciamento Completo do Genoma , Antígenos de Protozoários/genética , Variações do Número de Cópias de DNA , DNA de Protozoário , Sistema do Grupo Sanguíneo Duffy/genética , Eritrócitos/parasitologia , Etiópia , Genoma de Protozoário , Humanos , Malária Vivax/genética , Filogenia , Plasmodium vivax/classificação , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética
6.
PLoS Negl Trop Dis ; 14(7): e0008202, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645098

RESUMO

Plasmodium vivax is the most widespread and difficult to treat cause of human malaria. The development of vaccines against the blood stages of P. vivax remains a key objective for the control and elimination of vivax malaria. Erythrocyte binding-like (EBL) protein family members such as Duffy binding protein (PvDBP) are of critical importance to erythrocyte invasion and have been the major target for vivax malaria vaccine development. In this study, we focus on another member of EBL protein family, P. vivax erythrocyte binding protein (PvEBP). PvEBP was first identified in Cambodian (C127) field isolates and has subsequently been showed its preferences for binding reticulocytes which is directly inhibited by antibodies. We analysed PvEBP sequence from 316 vivax clinical isolates from eight countries including China (n = 4), Ethiopia (n = 24), Malaysia (n = 53), Myanmar (n = 10), Papua New Guinea (n = 16), Republic of Korea (n = 10), Thailand (n = 174), and Vietnam (n = 25). PvEBP gene exhibited four different phenotypic clusters based on the insertion/deletion (indels) variation. PvEBP-RII (179-479 aa.) showed highest polymorphism similar to other EBL family proteins in various Plasmodium species. Whereas even though PvEBP-RIII-V (480-690 aa.) was the most conserved domain, that showed strong neutral selection pressure for gene purifying with significant population expansion. Antigenicity of both of PvEBP-RII (16.1%) and PvEBP-RIII-V (21.5%) domains were comparatively lower than other P. vivax antigen which expected antigens associated with merozoite invasion. Total IgG recognition level of PvEBP-RII was stronger than PvEBP-RIII-V domain, whereas total IgG inducing level was stronger in PvEBP-RIII-V domain. These results suggest that PvEBP-RII is mainly recognized by natural IgG for innate protection, whereas PvEBP-RIII-V stimulates IgG production activity by B-cell for acquired immunity. Overall, the low antigenicity of both regions in patients with vivax malaria likely reflects genetic polymorphism for strong positive selection in PvEBP-RII and purifying selection in PvEBP-RIII-V domain. These observations pose challenging questions to the selection of EBP and point out the importance of immune pressure and polymorphism required for inclusion of PvEBP as a vaccine candidate.


Assuntos
Variação Genética , Malária Vivax/imunologia , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Anticorpos Antiprotozoários/imunologia , Ásia , Humanos , Imunidade Humoral , Malária Vivax/parasitologia , Plasmodium vivax/química , Plasmodium vivax/imunologia , Polimorfismo Genético , Proteínas de Protozoários/química , Seleção Genética , Alinhamento de Sequência
7.
Sci Rep ; 8(1): 8870, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891983

RESUMO

Malaria control program in the Arabian Peninsula, backed by adequate logistical support, has interrupted transmission with exception of limited sites in Saudi Arabia and sporadic outbreaks in Oman. However, sustained influx of imported malaria represents a direct threat to the above success. Here we examined the extent of genetic diversity among imported P. vivax in Qatar, and its ability to produce gametocytes, compared to parasites in main sites of imported cases, the Indian subcontinent (india) and East Africa (Sudan and Ethiopia). High diversity was seen among imported P. vivax in Qatar, comparable to parasites in the Indian subcontinent and East Africa. Limited genetic differentiation was seen among imported P. vivax, which overlapped with parasites in India, but differentiated from that in Sudan and Ethiopia. Parasite density among imported cases, ranged widely between 26.25-7985934.1 Pv18S rRNA copies/µl blood, with a high prevalence of infections carried gametocytes detectable by qRT-PCR. Parasitaemia was a stronger predictor for P. vivax gametocytes density (r = 0.211, P = 0.04). The extensive diversity of imported P. vivax and its ability to produce gametocytes represent a major threat for re-introduction of malaria in Qatar. The genetic relatedness between P. vivax reported in Qatar and those in India suggest that elimination strategy should target flow and dispersal of imported malaria into the region.


Assuntos
Doenças Transmissíveis Importadas/transmissão , Transmissão de Doença Infecciosa , Variação Genética , Malária Vivax/transmissão , Plasmodium vivax/classificação , Plasmodium vivax/genética , África Oriental , Doenças Transmissíveis Importadas/parasitologia , Genótipo , Humanos , Índia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Epidemiologia Molecular , Carga Parasitária , Plasmodium vivax/isolamento & purificação , Catar/epidemiologia , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Reação em Cadeia da Polimerase em Tempo Real
8.
Acta Trop ; 103(3): 186-94, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17658447

RESUMO

A study was conducted to determine the role of non-biting cyclorrhaphan flies as carriers of intestinal parasites in slum areas of Addis Ababa from January 2004 to June 2004. A total of 9550 flies, comprising of at least seven species were collected from four selected sites and examined for human intestinal parasites using the formol-ether concentration method. The dominant fly species was Chrysomya rufifacies (34.9%) followed by Musca domestica (31%), Musca sorbens (20.5.%), Lucina cuprina (6.8%), Sarcophaga sp. (2.8%), Calliphora vicina (2.2%) and Wohlfahrtia sp. (1.8%). Six intestinal helminths (Ascaris lumbricoides, Trichuris trichiura, hookworms, Hymenolepis nana, Taenia spp. and Strongyloides stercoralis) and at least four protozoan parasites (Entamoeba histolytica/dispar, Entamoeba coli, Giardia lamblia and Cryptosporidium sp.) were isolated from both the external and gut contents of the flies. A. lumbricoides and T. trichiura among the helminths and E. histolytica/dispar and E. coli among the protozoans were the dominant parasites detected both on the external and in the gut contents of the flies, but occurring more in the latter. Among the flies, C. rufifacies and M. sorbens were the highest carriers of the helminth and protozoan parasites, respectively. The public health significance of these findings is highlighted.


Assuntos
Dípteros/parasitologia , Helmintíase/transmissão , Helmintos/isolamento & purificação , Insetos Vetores/parasitologia , Enteropatias Parasitárias/transmissão , Animais , Dípteros/classificação , Etiópia , Humanos , Insetos Vetores/classificação , Áreas de Pobreza
9.
PLoS Negl Trop Dis ; 11(7): e0005806, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28746333

RESUMO

Ethiopia is one of the few African countries where Plasmodium vivax is co-endemic with P. falciparum. Malaria transmission is seasonal and transmission intensity varies mainly by landscape and climate. Although the recent emergence of drug resistant parasites presents a major issue to malaria control in Ethiopia, little is known about the transmission pathways of parasite species and prevalence of resistant markers. This study used microsatellites to determine population diversity and gene flow patterns of P. falciparum (N = 226) and P. vivax (N = 205), as well as prevalence of drug resistant markers to infer the impact of gene flow and existing malaria treatment regimes. Plasmodium falciparum indicated a higher rate of polyclonal infections than P. vivax. Both species revealed moderate genetic diversity and similar population structure. Populations in the northern highlands were closely related to the eastern Rift Valley, but slightly distinct from the southern basin area. Gene flow via human migrations between the northern and eastern populations were frequent and mostly bidirectional. Landscape genetic analyses indicated that environmental heterogeneity and geographical distance did not constrain parasite gene flow. This may partly explain similar patterns of resistant marker prevalence. In P. falciparum, a high prevalence of mutant alleles was detected in codons related to chloroquine (pfcrt and pfmdr1) and sulfadoxine-pyrimethamine (pfdhps and pfdhfr) resistance. Over 60% of the samples showed pfmdr1 duplications. Nevertheless, no mutation was detected in pfK13 that relates to artemisinin resistance. In P. vivax, while sequences of pvcrt-o were highly conserved and less than 5% of the samples showed pvmdr duplications, over 50% of the samples had pvmdr1 976F mutation. It remains to be tested if this mutation relates to chloroquine resistance. Monitoring the extent of malaria spread and markers of drug resistance is imperative to inform policy for evidence-based antimalarial choice and interventions. To effectively reduce malaria burden in Ethiopia, control efforts should focus on seasonal migrant populations.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Genótipo , Malária Falciparum/transmissão , Malária Vivax/transmissão , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Doenças Endêmicas , Etiópia/epidemiologia , Feminino , Fluxo Gênico , Genes de Protozoários , Genética Populacional , Humanos , Lactente , Recém-Nascido , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Prevalência , Adulto Jovem
10.
PLoS Negl Trop Dis ; 11(3): e0005465, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28362818

RESUMO

BACKGROUND: The control and elimination of Plasmodium vivax will require a better understanding of its transmission dynamics, through the application of genotyping and population genetics analyses. This paper describes VivaxGEN (http://vivaxgen.menzies.edu.au), a web-based platform that has been developed to support P. vivax short tandem repeat data sharing and comparative analyses. RESULTS: The VivaxGEN platform provides a repository for raw data generated by capillary electrophoresis (FSA files), with fragment analysis and standardized allele calling tools. The query system of the platform enables users to filter, select and differentiate samples and alleles based on their specified criteria. Key population genetic analyses are supported including measures of population differentiation (FST), expected heterozygosity (HE), linkage disequilibrium (IAS), neighbor-joining analysis and Principal Coordinate Analysis. Datasets can also be formatted and exported for application in commonly used population genetic software including GENEPOP, Arlequin and STRUCTURE. To date, data from 10 countries, including 5 publicly available data sets have been shared with VivaxGEN. CONCLUSIONS: VivaxGEN is well placed to facilitate regional overviews of P. vivax transmission dynamics in different endemic settings and capable to be adapted for similar genetic studies of P. falciparum and other organisms.


Assuntos
Acesso à Informação , Armazenamento e Recuperação da Informação , Repetições de Microssatélites , Plasmodium vivax/genética , Software , Estatística como Assunto/métodos , Alelos , Variação Genética , Genótipo , Humanos , Disseminação de Informação , Internet , Desequilíbrio de Ligação , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Plasmodium falciparum/genética
11.
PLoS One ; 10(10): e0140780, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26468643

RESUMO

BACKGROUND: P. vivax is an important public health burden in Ethiopia, accounting for almost half of all malaria cases. Owing to heterogeneous transmission across the country, a stronger evidence base on local transmission dynamics is needed to optimise allocation of resources and improve malaria interventions. METHODOLOGY AND PRINCIPAL FINDINGS: In a pilot evaluation of local level P. vivax molecular surveillance in southern Ethiopia, the diversity and population structure of isolates collected between May and November 2013 were investigated. Blood samples were collected from microscopy positive P. vivax patients recruited to clinical and cross-sectional surveys from four sites: Arbaminch, Halaba, Badawacho and Hawassa. Parasite genotyping was undertaken at nine tandem repeat markers. Eight loci were successfully genotyped in 197 samples (between 36 and 59 per site). Heterogeneity was observed in parasite diversity and structure amongst the sites. Badawacho displayed evidence of unstable transmission, with clusters of identical clonal infections. Linkage disequilibrium in Badawacho was higher (IAS = 0.32, P = 0.010) than in the other populations (IAS range = 0.01-0.02) and declined markedly after adjusting for identical infections (IAS = 0.06, P = 0.010). Other than Badawacho (HE = 0.70), population diversity was equivalently high across the sites (HE = 0.83). Polyclonal infections were more frequent in Hawassa (67%) than the other populations (range: 8-44%). Despite the variable diversity, differentiation between the sites was low (FST range: 5 x 10-3-0.03). CONCLUSIONS: Marked variation in parasite population structure likely reflects differing local transmission dynamics. Parasite genotyping in these heterogeneous settings has potential to provide important complementary information with which to optimise malaria control interventions.


Assuntos
Variação Genética , Malária Vivax/parasitologia , Malária Vivax/transmissão , Plasmodium vivax/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise por Conglomerados , Estudos Transversais , Etiópia/epidemiologia , Feminino , Genética Populacional , Genótipo , Humanos , Lactente , Desequilíbrio de Ligação , Malária Vivax/epidemiologia , Masculino , Plasmodium vivax/classificação , Prevalência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA