Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 31(2): 429-42, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22085926

RESUMO

Wnts are required for cardiogenesis but the role of specific Wnts in cardiac repair remains unknown. In this report, we show that a dynamic Wnt1/ßcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. Acute ischaemic cardiac injury upregulates Wnt1 that is initially expressed in the epicardium and subsequently by cardiac fibroblasts in the region of injury. Following cardiac injury, the epicardium is activated organ-wide in a Wnt-dependent manner, expands, undergoes epithelial-mesenchymal transition (EMT) to generate cardiac fibroblasts, which localize in the subepicardial space. The injured regions in the heart are Wnt responsive as well and Wnt1 induces cardiac fibroblasts to proliferate and express pro-fibrotic genes. Disruption of downstream Wnt signalling in epicardial cells decreases epicardial expansion, EMT and leads to impaired cardiac function and ventricular dilatation after cardiac injury. Furthermore, disruption of Wnt/ßcatenin signalling in cardiac fibroblasts impairs wound healing and decreases cardiac performance as well. These findings reveal that a pro-fibrotic Wnt1/ßcatenin injury response is critically required for preserving cardiac function after acute ischaemic cardiac injury.


Assuntos
Fibroblastos/metabolismo , Coração/fisiologia , Infarto do Miocárdio/patologia , Pericárdio/metabolismo , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Proteína Wnt1/fisiologia , beta Catenina/fisiologia , Animais , Divisão Celular , Transição Epitelial-Mesenquimal , Fibrose , Regulação da Expressão Gênica , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Pericárdio/patologia , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/fisiologia , Regulação para Cima , Proteína Wnt1/biossíntese , Proteína Wnt1/genética , Cicatrização/fisiologia
2.
FASEB J ; 25(6): 1836-43, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21321190

RESUMO

Human endothelial progenitor cells (hEPCs) participate in neovascularization of ischemic tissues. Function and number of hEPCs decline in patients with cardiovascular disease, and therapeutic strategies to enhance hEPC function remain an important field of investigation. The Wnt signaling system, comprising 19 lipophilic proteins, regulates vascular patterning in the developing embryo. However, the effects of Wnts on hEPCs and the adult vasculature remain unclear. We demonstrate here that Wnt1 is expressed in a subset of endothelial cells lining the murine embryonic dorsal aorta and is reactivated in malignant angiosarcoma, suggesting a strong association of Wnt1 with angiogenesis. We investigate the effects of Wnt1 in enhancing hEPC function and blood flow to ischemic tissues and show that Wnt1 enhances the proliferative and angiogenic functions of hEPCs in a hepatocyte growth factor (HGF)-dependent manner. Injection of Wnt1-expressing hEPCs increases blood flow and capillary density in murine ischemic hindlimbs. Furthermore, injection of Wnt1 protein alone similarly increases blood flow and capillary density in ischemic hindlimbs, and this effect is associated with increased HGF expression in ischemic muscle. These findings demonstrate that Wnt1, a marker of neural crest cells and hitherto unknown angiogenic function, is a novel angiogenic protein that is expressed in developing endothelial cells, exerts salutary effects on postnatal hEPCs, and can be therapeutically deployed to increase blood flow and angiogenesis in ischemic tissues.


Assuntos
Células Endoteliais/citologia , Fator de Crescimento de Hepatócito/metabolismo , Isquemia/metabolismo , Neovascularização Fisiológica/fisiologia , Células-Tronco/fisiologia , Proteína Wnt1/metabolismo , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/embriologia , Modelos Animais de Doenças , Embrião de Mamíferos/metabolismo , Células Endoteliais/fisiologia , Fator de Crescimento de Hepatócito/genética , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/irrigação sanguínea , Doença Arterial Periférica/complicações , Doença Arterial Periférica/terapia , Proteína Wnt1/genética
3.
J Am Chem Soc ; 131(7): 2541-6, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19193004

RESUMO

The difficulty of analyzing higher order RNA structure, especially for folding intermediates and for RNAs whose functions require domains that are conformationally flexible, emphasizes the need for new approaches for modeling RNA tertiary structure accurately. Here, we report a concise approach that makes use of facile RNA structure probing experiments that are then interpreted using a computational algorithm, carefully tailored to optimize both the resolution and refinement speed for the resulting structures, without requiring user intervention. The RNA secondary structure is first established using SHAPE chemistry. We then use a sequence-directed cleavage agent, which can be placed arbitrarily in many helical motifs, to obtain high quality inter-residue distances. We interpret this in-solution chemical information using a fast, coarse grained, discrete molecular dynamics engine in which each RNA nucleotide is represented by pseudoatoms for the phosphate, ribose, and nucleobase groups. By this approach, we refine base paired positions in yeast tRNA(Asp) to 4 A rmsd without any preexisting information or assumptions about secondary or tertiary structures. This blended experimental and computational approach has the potential to yield native-like models for the diverse universe of functionally important RNAs whose structures cannot be characterized by conventional structural methods.


Assuntos
RNA/química , Sequência de Bases , Ácido Edético/análogos & derivados , Ácido Edético/química , Compostos Férricos/química , Compostos Ferrosos/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA/genética , RNA de Transferência de Ácido Aspártico/química , RNA de Transferência de Ácido Aspártico/genética
4.
J Am Chem Soc ; 130(37): 12244-5, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-18710236

RESUMO

The functions of most RNA molecules are critically dependent on the distinct local dynamics that characterize secondary structure and tertiary interactions and on structural changes that occur upon binding by proteins and small molecule ligands. Measurements of RNA dynamics at nucleotide resolution set the foundation for understanding the roles of individual residues in folding, catalysis, and ligand recognition. In favorable cases, local order in small RNAs can be quantitatively analyzed by NMR in terms of a generalized order parameter, S2. Alternatively, SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemistry measures local nucleotide flexibility in RNAs of any size using structure-sensitive reagents that acylate the 2'-hydroxyl position. In this work, we compare per-residue RNA dynamics, analyzed by both S2 and SHAPE, for three RNAs: the HIV-1 TAR element, the U1A protein binding site, and the Tetrahymena telomerase stem loop 4. We find a very strong correlation between the two measurements: nucleotides with high SHAPE reactivities consistently have low S2 values. We conclude that SHAPE chemistry quantitatively reports local nucleotide dynamics and can be used with confidence to analyze dynamics in large RNAs, RNA-protein complexes, and RNAs in vivo.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , RNA/química , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Relação Estrutura-Atividade
5.
J Am Chem Soc ; 130(28): 8884-5, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-18558680

RESUMO

RNA molecules undergo local conformational dynamics on timescales spanning picoseconds to minutes. Slower local motions have the greater potential to govern RNA folding, ligand recognition, and ribonucleoprotein assembly reactions but are difficult to detect in large RNAs with complex structures. RNA SHAPE chemistry employs acylation of the ribose 2'-hydroxyl position to measure local nucleotide flexibility in RNA and is well-characterized by a mechanism in which each nucleotide samples unreactive (closed) and reactive (open) states. We monitor RNA conformational dynamics over distinct time domains by varying the electrophilicity of the acylating reagent. Select C2'-endo nucleotides are nonreactive toward fast reagents but reactive toward slower SHAPE reagents in both model RNAs and in a large RNA with a tertiary fold. We conclude, first, that the C2'-endo conformation by itself does not govern SHAPE reactivity. However, some C2'-endo nucleotides undergo extraordinarily slow conformational changes, on the order of 10(-4) s(-1). Due to their distinctive local dynamics, C2'-endo nucleotides have the potential to function as rate-determining molecular switches and are likely to play central, currently unexplored, roles in RNA folding and function.


Assuntos
Conformação de Ácido Nucleico , Nucleotídeos/química , RNA/química , Acilação , Sequência de Bases , Hidrólise , Cinética , Dados de Sequência Molecular , Termodinâmica
6.
Proc Natl Acad Sci U S A ; 103(37): 13640-5, 2006 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16945907

RESUMO

Retroviruses selectively package two copies of their RNA genomes in the context of a large excess of nongenomic RNA. Specific packaging of genomic RNA is achieved, in part, by recognizing RNAs that form a poorly understood dimeric structure at their 5' ends. We identify, quantify the stability of, and use extensive experimental constraints to calculate a 3D model for a tertiary structure domain that mediates specific interactions between RNA genomes in a gamma retrovirus. In an initial interaction, two stem-loop structures from one RNA form highly stringent cross-strand loop-loop base pairs with the same structures on a second genomic RNA. Upon subsequent folding to the final dimer state, these intergenomic RNA interactions convert to a high affinity and compact tertiary structure, stabilized by interdigitated interactions between U-shaped RNA units. This retroviral conformational switch model illustrates how two-step formation of an RNA tertiary structure yields a stringent molecular recognition event at early assembly steps that can be converted to the stable RNA architecture likely packaged into nascent virions.


Assuntos
Genoma Viral , RNA Viral/química , Retroviridae/química , Retroviridae/genética , Sequência de Bases , Dimerização , Dados de Sequência Molecular , Conformação de Ácido Nucleico
7.
J Am Chem Soc ; 127(39): 13622-8, 2005 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-16190727

RESUMO

Ribose 2'-amine substitutions are broadly useful as structural probes in nucleic acids. In addition, structure-selective chemical reaction at 2'-amine groups is a robust technology for interrogating local nucleotide flexibility and conformational changes in RNA and DNA. We analyzed crystal structures for several RNA duplexes containing 2'-amino cytidine (C(N)) residues that form either C(N)-G base pairs or C(N)-A mismatches. The 2'-amine substitution is readily accommodated in an A-form RNA helix and thus differs from the C2'-endo conformation observed for free nucleosides. The 2'-amide product structure was visualized directly by acylating a C(N)-A mismatch in intact crystals and is also compatible with A-form geometry. To visualize conformations able to facilitate formation of the amide-forming transition state, in which the amine nucleophile carries a positive partial charge, we analyzed crystals of the C(N)-A duplex at pH 5, where the 2'-amine is protonated. The protonated amine moves to form a strong electrostatic interaction with the 3'-phosphodiester. Taken together with solution-phase experiments, 2'-amine acylation is likely facilitated by either of two transition states, both involving precise positioning of the adjacent 3'-phosphodiester group.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Acilação , Sequência de Bases , Cristalografia por Raios X , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA