Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 43, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217571

RESUMO

Adherent cells ensure membrane homeostasis during de-adhesion by various mechanisms, including endocytosis. Although mechano-chemical feedbacks involved in this process have been studied, the step-by-step build-up and resolution of the mechanical changes by endocytosis are poorly understood. To investigate this, we studied the de-adhesion of HeLa cells using a combination of interference reflection microscopy, optical trapping and fluorescence experiments. We found that de-adhesion enhanced membrane height fluctuations of the basal membrane in the presence of an intact cortex. A reduction in the tether force was also noted at the apical side. However, membrane fluctuations reveal phases of an initial drop in effective tension followed by saturation. The area fractions of early (Rab5-labelled) and recycling (Rab4-labelled) endosomes, as well as transferrin-labelled pits close to the basal plasma membrane, also transiently increased. On blocking dynamin-dependent scission of endocytic pits, the regulation of fluctuations was not blocked, but knocking down AP2-dependent pit formation stopped the tension recovery. Interestingly, the regulation could not be suppressed by ATP or cholesterol depletion individually but was arrested by depleting both. The data strongly supports Clathrin and AP2-dependent pit-formation to be central to the reduction in fluctuations confirmed by super-resolution microscopy. Furthermore, we propose that cholesterol-dependent pits spontaneously regulate tension under ATP-depleted conditions.


Assuntos
Clatrina , Invaginações Revestidas da Membrana Celular , Humanos , Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Células HeLa , Endocitose/fisiologia , Colesterol/metabolismo , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo
2.
J Org Chem ; 89(8): 5650-5664, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577786

RESUMO

Oxazine-6-one and 4-pyrimidinol are two important frameworks in pharmaceutical production. Herein, we disclosed a simple, efficient, inexpensive organic base-promoted and additive-stimulated protocol for the syntheses of variably functionalized oxazine-6-ones and 4-pyrimidinols employing acetonitrile solvent under conventional heating conditions using an oil bath through C-N and C-O coupled domino steps. This simple practicable productive protocol utilizes easily producible cheap precursors, namely, benzimidates or benzamidines, with differently substituted dicyano-olefins, and it comprises step economy, robustness, and moisture insensitive conditions affording high yield that avoids the use of transition-metal catalysts, multistep with multicomponent strategy, and harsh reaction conditions involving hazardous chemicals. This method is scalable into gram-scale production with good yield.

3.
J Am Chem Soc ; 145(46): 25392-25400, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37942795

RESUMO

Defect engineering, achieved by precise tuning of the atomic disorder within crystalline solids, forms a cornerstone of structural chemistry. This nuanced approach holds the potential to significantly augment thermoelectric performance by synergistically manipulating the interplay between the charge carrier and lattice dynamics. Here, the current study presents a distinctive investigation wherein the introduction of Hg doping into AgSbTe2 serves to partially curtail structural disorder. This strategic maneuver mitigates potential fluctuations originating from pronounced charge and size disparities between Ag+ and Sb3+, positioned in octahedral sites within the rock salt structure. Hg doping significantly improves the phase stability of AgSbTe2 by restricting the congenital emergence of the Ag2Te minor secondary phase and promotes partial atomic ordering in the cation sublattice. Reduction in atomic disorder coalesced with a complementary modification of electronic structure by Hg doping results in increased carrier mobility. The formation of nanoscale superstructure with sizes (2-5 nm) of the order of phonon mean free path in AgSbTe2 is further promoted by reduced partial disorder, causes enhanced scattering of heat-carrying phonons, and results in a glass-like ultralow lattice thermal conductivity (∼0.32 W m-1 K-1 at 297 K). Cumulatively, the multifaceted influence of Hg doping, in conjunction with the consequential reduction in disorder, allows achieving a high thermoelectric figure-of-merit, zT, of ∼2.4 at ∼570 K. This result defies conventional paradigms that prioritize increased disorder for optimizing zT.

4.
J Am Chem Soc ; 144(23): 10099-10118, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35652915

RESUMO

Efficient manipulation of thermal conductivity and fundamental understanding of the microscopic mechanisms of phonon scattering in crystalline solids are crucial to achieve high thermoelectric performance. Thermoelectric energy conversion directly and reversibly converts between heat and electricity and is a promising renewable technology to generate electricity by recovering waste heat and improve solid-state refrigeration. However, a unique challenge in thermal transport needs to be addressed to achieve high thermoelectric performance: the requirement of crystalline materials with ultralow lattice thermal conductivity (κL). A plethora of strategies have been developed to lower κL in crystalline solids by means of nanostructural modifications, introduction of intrinsic or extrinsic phonon scattering centers with tailored shape and dimension, and manipulation of defects and disorder. Recently, intrinsic local lattice distortion and lattice anharmonicity originating from various mechanisms such as rattling, bonding heterogeneity, and ferroelectric instability have found popularity. In this Perspective, we outline the role of manipulation of chemical bonding and structural chemistry on thermal transport in various high-performance thermoelectric materials. We first briefly outline the fundamental aspects of κL and discuss the current status of the popular phonon scattering mechanisms in brief. Then we discuss emerging new ideas with examples of crystal structure and lattice dynamics in exemplary materials. Finally, we present an outlook for focus areas of experimental and theoretical challenges, possible new directions, and integrations of novel techniques to achieve low κL in order to realize high-performance thermoelectric materials.

5.
Inorg Chem ; 61(18): 7130-7142, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35467851

RESUMO

A mononuclear uranyl complex, [UO2L] (1), has been synthesized with the ligand N,N'-bis(3-methoxy-2-hydroxybenzylidene)-1,6-diamino-3-azahexane (H2L). The complex showed a reversible U(VI)/U(V) redox couple in cyclic voltammetric measurements. The reduction potential of this couple showed a positive shift upon the addition of redox-inactive alkali- and alkaline-earth Lewis acidic metal ions (Li+, Na+, K+, Ca2+, Sr2+, and Ba2+) to an acetonitrile solution of complex 1. The positive shift of the reduction potential has been explained on the basis of the Lewis acidity and internal electric-field effect of the respective metal ions. The bimetallic complexes [UO2LLi(NO3)] (2), [UO2LNa(BF4)]2 (3), [UO2LK(PF6)]2 (4), [(UO2L)2Ca]·(ClO4)2·CH3CN (5), [(UO2L)2Sr(H2O)2]·(ClO4)2·CH3CN (6), and [(UO2L)2Ba(ClO4)]·(ClO4) (7) have also been isolated in the solid state by reacting complex 1 with the corresponding metal ions and characterized by single-crystal X-ray diffraction. Density functional theory calculations of the optimized [UO2LM]n+ complexes have been used to rationalize the experimental reduction and electric-field potentials imposed by the non-redox-active cations.

6.
Inorg Chem ; 60(1): 438-448, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33351616

RESUMO

The strategic design and synthesis of two isomeric CuII complexes, [CuLA] and [CuLB], of asymmetrically dicondensed N2O3-donor Schiff-base ligands (where H2LA and H2LB are N-salicylidene-N'-3-methoxysalicylidenepropane-1,2-diamine and N-3-methoxysalicylidene-N'-salicylidenepropane-1,2-diamine, respectively) have been accomplished via a convenient CuII template method. These two complexes have been used as metalloligands for the synthesis of three pairs of Cu-Ln isomeric complexes [CuL(µ-NO3)Ln(NO3)2(H2O)]·CH3CN (for complexes 1A-3A, L = LA, and for complexes 1B-3B, L = LB and Ln = Gd, Tb, and Dy, respectively), all of which have been characterized structurally. In all six isomorphous and isostructural complexes, the decacoordinated LnIII centers and pentacoordinated CuII centers possess sphenocorona and square-pyramidal geometries, respectively. The isomeric pair of Cu-Gd compounds shows field-induced slow relaxation of magnetization, although they present the typical isotropic behavior of GdIII complexes, indicating that slow relaxation is not due to the usual energy barrier originating from the magnetic anisotropy. The isostructural derivatives with the ion-anisotropic lanthanides TbIII and DyIII do not show slow magnetic relaxation with or without a direct-current bias field, demonstrating that the magnetic response of the isotropic system CuII-GdIII occurs through different mechanisms than the rest of the Ln cations.

7.
Angew Chem Int Ed Engl ; 60(8): 4259-4265, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33140516

RESUMO

Here, we present lattice dynamics associated with the local chemical bonding hierarchy in Zintl compound TlInTe2 , which cause intriguing phonon excitations and strongly suppress the lattice thermal conductivity to an ultralow value (0.46-0.31 W m-1 K-1 ) in the 300-673 K. We established an intrinsic rattling nature in TlInTe2 by studying the local structure and phonon vibrations using synchrotron X-ray pair distribution function (PDF) (100-503 K) and inelastic neutron scattering (INS) (5-450 K), respectively. We showed that while 1D chain of covalently bonded I n T e 2 n - n transport heat with Debye type phonon excitation, ionically bonded Tl rattles with a frequency ca. 30 cm-1 inside distorted Thompson cage formed by I n T e 2 n - n . This highly anharmonic Tl rattling causes strong phonon scattering and consequently phonon lifetime reduces to ultralow value of ca. 0.66(6) ps, resulting in ultralow thermal conductivity in TlInTe2 .

8.
Angew Chem Int Ed Engl ; 60(18): 10350-10358, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33619797

RESUMO

Orthorhombic GeSe is a promising thermoelectric material. However, large band gap and strong covalent bonding result in a low thermoelectric figure of merit, zT≈0.2. Here, we demonstrate a maximum zT≈1.35 at 627 K in p-type polycrystalline rhombohedral (GeSe)0.9 (AgBiTe2 )0.1 , which is the highest value reported among GeSe based materials. The rhombohedral phase is stable in ambient conditions for x=0.8-0.29 in (GeSe)1-x (AgBiTe2 )x . The structural transformation accompanies change from covalent bonding in orthorhombic GeSe to metavalent bonding in rhombohedral (GeSe)1-x (AgBiTe2 )x . (GeSe)0.9 (AgBiTe2 )0.1 has closely lying primary and secondary valence bands (within 0.25-0.30 eV), which results in high power factor 12.8 µW cm-1 K-2 at 627 K. It also exhibits intrinsically low lattice thermal conductivity (0.38 Wm-1 K-1 at 578 K). Theoretical phonon dispersion calculations reveal vicinity of a ferroelectric instability, with large anomalous Born effective charges and high optical dielectric constant, which, in concurrence with high effective coordination number, low band gap and moderate electrical conductivity, corroborate metavalent bonding in (GeSe)0.9 (AgBiTe2 )0.1 . We confirmed the presence of low energy phonon modes and local ferroelectric domains using heat capacity measurement (3-30 K) and switching spectroscopy in piezoresponse force microscopy, respectively.

9.
J Am Chem Soc ; 142(36): 15595-15603, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32799442

RESUMO

Fundamental understanding of the correlation between chemical bonding and lattice dynamics in intrinsically low thermal conductive crystalline solids is important to thermoelectrics, thermal barrier coating, and more recently to photovoltaics. Two-dimensional (2D) layered halide perovskites have recently attracted widespread attention in optoelectronics and solar cells. Here, we discover intrinsically ultralow lattice thermal conductivity (κL) in the single crystal of all-inorganic layered Ruddlesden-Popper (RP) perovskite, Cs2PbI2Cl2, synthesized by the Bridgman method. We have measured the anisotropic κL value of the Cs2PbI2Cl2 single crystal and observed an ultralow κL value of ∼0.37-0.28 W/mK in the temperature range of 295-523 K when measured along the crystallographic c-axis. First-principles density functional theory (DFT) analysis of the phonon spectrum uncovers the presence of soft (frequency ∼18-55 cm-1) optical phonon modes that constitute relatively flat bands due to localized vibrations of Cs and I atoms. A further low energy optical mode exists at ∼12 cm-1 that originates from dynamic octahedral rotation around Pb caused by anharmonic vibration of Cl atoms induced by a 3s2 lone pair. We provide experimental evidence for such low energy optical phonon modes with low-temperature heat capacity and temperature-dependent Raman spectroscopic measurements. The strong anharmonic coupling of the low energy optical modes with acoustic modes causes damping of heat carrying acoustic phonons to ultrasoft frequency (maximum ∼37 cm-1). The combined effect of soft elastic layered structure, abundance of low energy optical phonons, and strong acoustic-optical phonon coupling results in an intrinsically ultralow κL value in the all-inorganic layered RP perovskite Cs2PbI2Cl2.

10.
J Am Chem Soc ; 142(28): 12237-12244, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32571016

RESUMO

The orthorhombic phase of GeSe, a structural analogue of layered SnSe (space group: Pnma), has recently attracted attention after a theoretical prediction of high thermoelectric figure of merit, zT > 2. The experimental realization of such high performance in orthorhombic GeSe, however, is still elusive (zT ≈ 0.2). The rhombohedral phase of GeSe, a structural analogue of GeTe (space group: R3m), previously stabilized at high pressure (2 GPa) and high temperature (1600 K), is promising due to its theoretically predicted ferroelectric instability and the higher earth abundance of Se compared to Te. Here, we demonstrate high thermoelectric performance in the rhombohedral crystals of GeSe, which is stabilized at ambient conditions by alloying with 10 mol % AgBiSe2. We show ultralow lattice thermal conductivity (κL) of 0.74-0.47 W/mK in the 300-723 K range and high zT ≈ 1.25 at 723 K in the p-type rhombohedral (GeSe)0.9(AgBiSe2)0.1 crystals grown using Bridgman method. First-principles density functional theoretical analysis reveals its vicinity to a ferroelectric instability which generates large anomalous Born effective charges and strong coupling of low energy polar optical phonons with acoustic phonons. The presence of soft optical phonons and incipient ferroelectric instability in (GeSe)0.9(AgBiSe2)0.1 are directly evident in the low temperature heat capacity (Cp) and switching spectroscopy piezoresponse force microscopy (SS-PFM) experiments, respectively. Effective scattering of heat carrying acoustic phonons by ferroelectric instability induced soft transverse optical phonons significantly reduces the κL and enhances the thermoelectric performance in rhombohedral (GeSe)0.9(AgBiSe2)0.1 crystals.

11.
Chemistry ; 26(7): 1612-1623, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31793668

RESUMO

Two mononuclear uranyl complexes, [UO2 L1 ] (1) and [UO2 L2 ]⋅0.5 CH3 CN⋅0.25 CH3 OH (2), have been synthesized from two multidentate N3 O4 donor ligands, N,N'-bis(5-methoxysalicylidene)diethylenetriamine (H2 L1 ) and N,N'-bis(3-methoxysalicylidene)diethylenetriamine (H2 L2 ), respectively, and have been structurally characterized. Both complexes 1 and 2 showed a reversible UVI /UV couple at -1.571 and -1.519 V, respectively, in cyclic voltammetry. The reduction potential of the UVI /UV couple shifted towards more positive potential on addition of Li+ , Na+ , K+ , and Ag+ metal ions to acetonitrile solutions of complex 2, and the resulting potential was correlated with the Lewis acidity of the metal ions and was also justified by theoretical DFT calculations. No such shift in reduction potential was observed for complex 1. All four bimetallic products, [UO2 L2 Li0.5 ](ClO4 )0.5 (3), [UO2 L2 Na(ClO4 )]2 (4), [UO2 L2 Ag(NO3 )(H2 O)] (5), and [(UO2 L2 )2 K(H2 O)2 ]PF6 (6), formed on addition of the Li+ , Na+ , Ag+ , and K+ metal ions, respectively, to acetonitrile solutions of complex 2, were isolated in the solid state and structurally characterized by single-crystal X-ray diffraction. In all the species, the inner N3 O2 donor set of the ligand encompasses the equatorial plane of the uranyl ion and the outer open compartment with O2 O'2 donor sites hosts the second metal ion.

12.
Inorg Chem ; 59(20): 14989-15003, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33001631

RESUMO

In the present work, four new heterometallic coordination complexes, {[(CuL)2Mn(nic)(H2O)2](ClO4)(0.5H2O)}n (1), {[(CuL)2Cd(nic)(H2O)2](ClO4)(H2O)}n (2), [(CuL)2Mn(nic)2]·2CH3OH (3), and [(CuL)2Cd(nic)2]·2CH3OH (4) (where H2L = N,N'-bis(α-methylsalicylidene)-1,3-propanediamine and nic = nicotinate ion), have been synthesized and characterized by single-crystal X-ray crystallography. In complexes 1 and 2, the nicotinate ion acts as a bifunctional linker (N,O donor) and joins the linear trinuclear nodes to form 1D polymeric chains. However, in complexes 3 and 4, the nicotinate ion uses only the oxygen atoms of the carboxylic acid (O donor) to bind to the metal centers, forming discrete linear trinuclear units, while the pyridyl nitrogen (N donor atom) remains free. The dc magnetic susceptibility measurements show that the CuII and MnII ions are antiferromagnetically coupled in both 1 and 3, with exchange coupling constants (JMn-Cu) of -20.57 ± 0.08 and -9.38 ± 0.08 cm-1, respectively. Among the four complexes, 1 and 3 show catechol oxidase and phenoxazinone synthase like catalytic activities. The turnover numbers (kcat) of complexes 1 and 3 for catecholase activity are 1121 and 720 h-1, respectively, at an optimum pH of 8.0 and for phenoxazinone synthase activity are 429 and 398 h-1, respectively, at an optimum pH of 9.7. The higher kcat values of 1 for both reactions are attributable to a water molecule coordinated to the central MnII atom that facilitates the substrate-catalyst binding. An ESI-mass spectral analysis indicates that trinuclear heterometallic species, e.g., [(CuL)2Mn(nic)(H2O)]+ for 1 and [(CuL)2Mn(nic)]+ for 3, are the active species that bind to the substrate, and on that basis, probable mechanisms through the formation of radical intermediates have been proposed.

13.
Nanotechnology ; 32(2): 025208, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33089825

RESUMO

Organic fluorescent semiconducting nanomaterials have gained widespread research interest owing to their potential applications in the arena of high-tech devices. We designed two pyrazaacene-based compounds, their stacked system, and the role of gluing interactions to fabricate nanomaterials, and determined the prospective band gaps utilizing the density functional theory calculation. The two pyrazaacene derivatives containing complementary amide linkages (-CONH and -NHCO) were efficiently synthesized. The synthesized compounds are highly soluble in common organic solvents as well as highly fluorescent and photostable. The heterocycles and their mixture displayed efficient solvent dependent fluorescence in the visible region of the solar spectrum. Notably, the compounds were associated through complementary NH•••O = C type hydrogen bonding, π-π stacking, and hydrophobic interactions, and thereby afforded nanomaterials with a low band gap. Fascinatingly, the fabricated stacked nanomaterial system exhibited resistive switching behavior, leading to the fabrication of an efficient write-once-read-many-times memory device of crossbar structure.

14.
Nano Lett ; 19(8): 5703-5709, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31347854

RESUMO

Ultrathin ferroelectric semiconductors with high charge carrier mobility are much coveted systems for the advancement of various electronic and optoelectronic devices. However, in traditional oxide ferroelectric insulators, the ferroelectric transition temperature decreases drastically with decreasing material thickness and ceases to exist below certain critical thickness owing to depolarizing fields. Herein, we show the emergence of an ordered ferroelectric ground state in ultrathin (∼2 nm) single crystalline nanosheets of Bi2O2Se at room temperature. Free-standing ferroelectric nanosheets, in which oppositely charged alternating layers are self-assembled together by electrostatic interactions, are synthesized by a simple, rapid, and scalable wet chemical procedure at room temperature. The existence of ferroelectricity in Bi2O2Se nanosheets is confirmed by dielectric measurements and piezoresponse force spectroscopy. The spontaneous orthorhombic distortion in the ultrathin nanosheets breaks the local inversion symmetry, thereby resulting in ferroelectricity. The local structural distortion and the formation of spontaneous dipole moment were directly probed by atomic resolution scanning transmission electron microscopy and density functional theory calculations.

15.
Angew Chem Int Ed Engl ; 59(27): 11115-11122, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32212363

RESUMO

A two-step optimization strategy is used to improve the thermoelectric performance of SnTe via modulating the electronic structure and phonon transport. The electrical transport of self-compensated SnTe (that is, Sn1.03 Te) was first optimized by Ag doping, which resulted in an optimized carrier concentration. Subsequently, Mn doping in Sn1.03-x Agx Te resulted in highly converged valence bands, which improved the Seebeck coefficient. The energy gap between the light and heavy hole bands, i.e. ΔEv decreases to 0.10 eV in Sn0.83 Ag0.03 Mn0.17 Te compared to the value of 0.35 eV in pristine SnTe. As a result, a high power factor of ca. 24.8 µW cm-1 K-2 at 816 K in Sn0.83 Ag0.03 Mn0.17 Te was attained. The lattice thermal conductivity of Sn0.83 Ag0.03 Mn0.17 Te reached to an ultralow value (ca. 0.3 W m-1 K-1 ) at 865 K, owing to the formation of Ag7 Te4 nanoprecipitates in SnTe matrix. A high thermoelectric figure of merit (z T≈1.45 at 865 K) was obtained in Sn0.83 Ag0.03 Mn0.17 Te.

16.
J Am Chem Soc ; 141(49): 19505-19512, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31735034

RESUMO

Successful applications of a thermoelectric material require simultaneous development of compatible n- and p-type counterparts. While the thermoelectric performance of p-type GeTe has been improved tremendously in recent years, it has been a challenge to find a compatible n-type GeTe counterpart due to the prevalence of intrinsic Ge vacancies. Herein, we have shown that alloying of AgBiSe2 with GeTe results in an intriguing evolution in its crystal and electronic structures, resulting in n-type thermoelectric properties. We have demonstrated that the ambient rhombohedral structure of pristine GeTe transforms into cubic phase in (GeTe)100-x(AgBiSe2)x for x ≥ 25, with concurrent change from its p-type electronic character to n-type character in electronic transport properties. Such change in structural and electronic properties is confirmed from the nonmonotonic variation of band gap, unit cell volume, electrical conductivity, and Seebeck coefficient, all of which show an inflection point around x ∼ 20, as well as from the temperature variations of synchrotron powder X-ray diffractions and differential scanning calorimetry. First-principles density functional theoretical (DFT) calculations explain that the shift toward n-type electronic character with increasing AgBiSe2 concentration arises due to increasing contribution of Bi p orbitals in the conduction band edge of (GeTe)100-x(AgBiSe2)x. This cubic n-type phase has promising thermoelectric properties with a band gap of ∼0.25 eV and ultralow lattice thermal conductivity that ranges between 0.3 and 0.6 W/mK. Further, we have shown that (GeTe)100-x(AgBiSe2)x has promising thermoelectric performance in the mid-temperature range (400-500 K) with maximum thermoelectric figure of merit, zT, reaching ∼1.3 in p-type (GeTe)80(AgBiSe2)20 at 467 K and ∼0.6 in n-type (GeTe)50(AgBiSe2)50 at 500 K.

17.
Environ Res ; 179(Pt B): 108839, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31679719

RESUMO

For circumventing the cumbersome and expensive multifunctional and multipolymer adsorbents for high-performance removals of hazardous water-contaminant(s), chitosan-g-[2-acrylamido-2-methyl-1-propanoic acid (AMPS)-co-2-(3-acrylamidopropanamido)-2-methylpropane-1-sulfonic acid (APAMPS)-co-2-(N-(3-amino-3-oxopropyl)acrylamido)-2-methylpropane-1-sulfonic acid (NAOPAMPS)-co-acrylamide (AM)] (i.e., chitosan-g-tetrapolymer), a multifunctional scalable and reusable hydrogel, was synthesized by grafting of chitosan and in situ attachments of N-H functionalized NAOPAMPS and APAMPS hydrophilic acrylamido-monomers during free-radical solution-polymerization of the two ex situ added AMPS and AM monomers in water. The response surface methodology was employed to synthesize one hydrogel envisaging the optimum balance between swelling and stability for the superadsorption of Cu(II), Cd(II), Pb(II), Cr2O72-, and HPO42-. The in situ attachments of NAOPAMPS and APAMPS, grafting of chitosan into tetrapolymer, structures and properties, pH-responsive abilities, superadsorption mechanism, and reusability were understood via in depth microstructural analyses of adsorbed and/or unadsorbed chitosan-g-tetrapolymer(s) through 1H/13C NMR, FTIR, XPS, TGA, XRD, DLS, and pHPZC. The maximum adsorption capacities of Cd(II), Cu(II), Pb(II), Cr2O72-, and HPO42- were 1374.41, 1521.08, 1554.08, 47.76, and 32.76 mg g-1, respectively.


Assuntos
Quitosana/química , Metais/química , Polímeros/química , Poluentes Químicos da Água/química , Adsorção , Cádmio , Cromatos/análise , Cromatos/química , Concentração de Íons de Hidrogênio , Chumbo , Metais/análise , Fosfatos/análise , Fosfatos/química , Poluentes Químicos da Água/análise , Purificação da Água
18.
Inorg Chem ; 57(24): 15216-15228, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30516050

RESUMO

Three Zn(II) complexes, [Zn2(HL)2(NO3)2]·H2O (1), [(Zn4L2)(µ3-OH)2](NO3)2·0.5H2O (2), and [(Zn6L2)( o-van)2(µ3-OCH3)2(µ3-OH)2](NO3)2 (3), have been synthesized by exploiting the flexidentate nature of a multidentate Schiff base ligand, H2L ( N, N'-bis(3-methoxysalicylidene)diethylenetriamine), by changing the reaction conditions and stoichiometry of the reactants. All three complexes are highly fluorescent in solution as well as in solid and have been used as luminescence sensors toward nitrophenol explosives in both the media. In aqueous/methanol medium, these complexes show very high selectivity and sensitivity with detection limit in ppb (2.03) or nM level (8.89 nM) for picric acid. The yellow color of all three Zn(II) complexes changes to red on mixing with small amount (∼5%) of picric acid in solid state, revealing the potential of these complexes for practical use in naked eye detection of 2,4,6-trinitrophenol (TNP) or picric acid in ambient light. In order to identify the host-guest interactions between Zn(II) complex and TNP, single crystals of the adduct of TNP with Zn(II) complex, [Zn2(HL)2(H2O)2][C6H2N3O7]2 (4), were grown. Its X-ray crystal structure reveals that two picrate ions are attached to a dinuclear host with the help of H-bonding and π···π interactions, throwing light into the quenching mechanism and selectivity of detection.

19.
Angew Chem Int Ed Engl ; 57(46): 15167-15171, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30225858

RESUMO

The realization of n-type Ge chalcogenides is elusive owing to intrinsic Ge vacancies that make them p-type semiconductors. GeSe crystallizes into a layered orthorhombic structure similar to SnSe at ambient conditions. The high-symmetry cubic phase of GeSe is predicted to be stabilized by applying 7 GPa external pressure or by enhancing the entropy by increasing to temperature to 920 K. Stabilization of the n-type cubic phase of GeSe at ambient conditions was achieved by alloying with AgBiSe2 (30-50 mol %), enhancing the entropy through solid solution mixing. The interplay of positive and negative chemical pressure anomalously changes the band gap of GeSe with increasing the AgBiSe2 concentration. The band gap of n-type cubic (GeSe)1-x (AgBiSe2 )x (0.30≤x≤0.50) has a value in the 0.3-0.4 eV range, which is significantly lower than orthorhombic GeSe (1.1 eV). Cubic (GeSe)1-x (AgBiSe2 )x exhibits an ultralow lattice thermal conductivity (κL ≈0.43 W m-1 K-1 ) in the 300-723 K range. The low κL is attributed to significant phonon scattering by entropy-driven enhanced solid-solution point defects.

20.
Org Lett ; 26(28): 6001-6005, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38976355

RESUMO

Traditional catalyst development relies on multistep synthesis and isolation of ligand and precatalyst. Designing a catalytic system that can be assembled in situ from easily accessible starting materials can decrease the reaction complexity and enhance the synthetic utility. Herein, we report an inexpensive and commercially available CoBr2·H2O/terpyridine-catalyzed effective and straightforward transfer hydrogenation (TH) protocol for N-heteroarenes, utilizing NH3·BH3 (AB) under ambient conditions. Synthesis of diverse substrates and bioactive molecules demonstrated a practical applicability. Control experiments and DFT studies elucidate the mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA