Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Genet ; 13(11): e1007049, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29107990

RESUMO

The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis.


Assuntos
Androgênios/fisiologia , Encéfalo/efeitos dos fármacos , Bainha de Mielina/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Diferenciação Sexual , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/fisiologia , Di-Hidrotestosterona/farmacologia , Feminino , Flutamida/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/fisiologia
2.
Proc Natl Acad Sci U S A ; 113(51): 14829-14834, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930320

RESUMO

Lost myelin can be replaced after injury or during demyelinating diseases in a regenerative process called remyelination. In the central nervous system (CNS), the myelin sheaths, which protect axons and allow the fast propagation of electrical impulses, are produced by oligodendrocytes. The abundance and widespread distribution of oligodendrocyte progenitors (OPs) within the adult CNS account for this remarkable regenerative potential. Here, we report a key role for the male gonad, testosterone, and androgen receptor (AR) in CNS remyelination. After lysolecithin-induced demyelination of the male mouse ventral spinal cord white matter, the recruitment of glial fibrillary acidic protein-expressing astrocytes was compromised in the absence of testes and testosterone signaling via AR. Concomitantly, the differentiation of OPs into oligodendrocytes forming myelin basic protein (MBP)+ and proteolipid protein-positive myelin was impaired. Instead, in the absence of astrocytes, axons were remyelinated by protein zero (P0)+ and peripheral myelin protein 22-kDa (PMP22)+ myelin, normally only produced by Schwann cells in the peripheral nervous system. Thus, testosterone favors astrocyte recruitment and spontaneous oligodendrocyte-mediated remyelination. This finding may have important implications for demyelinating diseases, psychiatric disorders, and cognitive aging. The testosterone dependency of CNS oligodendrocyte remyelination may have roots in the evolutionary history of the AR, because the receptor has evolved from an ancestral 3-ketosteroid receptor through gene duplication at the time when myelin appeared in jawed vertebrates.


Assuntos
Bainha de Mielina/metabolismo , Receptores Androgênicos/metabolismo , Remielinização , Androgênios/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Neuroglia/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Receptores de Esteroides/metabolismo , Células de Schwann/metabolismo , Transdução de Sinais , Testículo/metabolismo , Testosterona/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(24): 7587-92, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26023184

RESUMO

The identification of new pathways governing myelination provides innovative avenues for remyelination. Liver X receptors (LXRs) α and ß are nuclear receptors activated by oxysterols that originated from the oxidation of cholesterol. They are crucial for cholesterol homeostasis, a major lipid constituent of myelin sheaths that are formed by oligodendrocytes. However, the role of LXRs in myelin generation and maintenance is poorly understood. Here, we show that LXRs are involved in myelination and remyelination processes. LXRs and their ligands are present in oligodendrocytes. We found that mice invalidated for LXRs exhibit altered motor coordination and spatial learning, thinner myelin sheaths, and reduced myelin gene expression. Conversely, activation of LXRs by either 25-hydroxycholesterol or synthetic TO901317 stimulates myelin gene expression at the promoter, mRNA, and protein levels, directly implicating LXRα/ß in the transcriptional control of myelin gene expression. Interestingly, activation of LXRs also promotes oligodendroglial cell maturation and remyelination after lysolecithin-induced demyelination of organotypic cerebellar slice cultures. Together, our findings represent a conceptual advance in the transcriptional control of myelin gene expression and strongly support a new role of LXRs as positive modulators in central (re)myelination processes.


Assuntos
Cerebelo/fisiologia , Bainha de Mielina/fisiologia , Receptores Nucleares Órfãos/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Colesterol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase , Hidrocarbonetos Fluorados/farmacologia , Hidroxicolesteróis/farmacologia , Receptores X do Fígado , Masculino , Camundongos , Camundongos Knockout , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/genética , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Técnicas de Cultura de Órgãos , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/deficiência , Regiões Promotoras Genéticas , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia , Sulfonamidas/farmacologia
4.
Glia ; 63(1): 104-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25092805

RESUMO

Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation, and axonal degeneration. Current therapies are limited to immunomodulators and antiinflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2(+) oligodendrocyte progenitor cells and CA II(+) mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR-knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Corpo Caloso/efeitos dos fármacos , Doenças Desmielinizantes/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Progesterona/farmacologia , Animais , Córtex Cerebral/metabolismo , Corpo Caloso/patologia , Cuprizona/farmacologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/patologia , Proteína Básica da Mielina/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
5.
Brain ; 136(Pt 1): 132-46, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23365095

RESUMO

Myelin regeneration is a major therapeutic goal in demyelinating diseases, and the failure to remyelinate rapidly has profound consequences for the health of axons and for brain function. However, there is no efficient treatment for stimulating myelin repair, and current therapies are limited to anti-inflammatory agents. Males are less likely to develop multiple sclerosis than females, but often have a more severe disease course and reach disability milestones at an earlier age than females, and these observations have spurred interest in the potential protective effects of androgens. Here, we demonstrate that testosterone treatment efficiently stimulates the formation of new myelin and reverses myelin damage in chronic demyelinated brain lesions, resulting from the long-term administration of cuprizone, which is toxic for oligodendrocytes. In addition to the strong effect of testosterone on myelin repair, the number of activated astrocytes and microglial cells returned to low control levels, indicating a reduction of neuroinflammatory responses. We also identify the neural androgen receptor as a novel therapeutic target for myelin recovery. After the acute demyelination of cerebellar slices in organotypic culture, the remyelinating actions of testosterone could be mimicked by 5α-dihydrotestosterone, a metabolite that is not converted to oestrogens, and blocked by the androgen receptor antagonist flutamide. Testosterone treatment also failed to promote remyelination after chronic cuprizone-induced demyelination in mice with a non-functional androgen receptor. Importantly, testosterone did not stimulate the formation of new myelin sheaths after specific knockout of the androgen receptor in neurons and macroglial cells. Thus, the neural brain androgen receptor is required for the remyelination effect of testosterone, whereas the presence of the receptor in microglia and in peripheral tissues is not sufficient to enhance remyelination. The potent synthetic testosterone analogue 7α-methyl-19-nortestosterone, which has been developed for long-term male contraception and androgen replacement therapy in hypogonadal males and does not stimulate prostate growth, also efficiently promoted myelin repair. These data establish the efficacy of androgens as remyelinating agents and qualify the brain androgen receptor as a promising drug target for remyelination therapy, thus providing the preclinical rationale for a novel therapeutic use of androgens in males with multiple sclerosis.


Assuntos
Encéfalo/metabolismo , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Receptores Androgênicos/metabolismo , Androgênios/farmacologia , Androgênios/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Receptores Androgênicos/genética , Testosterona/farmacologia , Testosterona/uso terapêutico
6.
FASEB J ; 25(11): 3999-4010, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21795502

RESUMO

Immature Purkinje neurons are particularly vulnerable cells. They survive in cerebellar slice cultures under treatment by the synthetic steroid mifepristone (RU486) that depolarizes them at this age. The present study aims at understanding the mechanism underlying this neuroprotective effect. In the developing cerebellum, the role of γ-aminobutyric acid (GABA) in neuron survival is unknown. In 3-d-old mouse cerebellar slice cultures, we show that GABA(A) receptor activation is depolarizing and excitatory. Antagonists of GABA(A) receptors rescue Purkinje neurons, demonstrating that GABA is endogenously released in this preparation and is toxic. Mifepristone likely protects these neurons by reversing GABA(A) receptor-mediated chloride fluxes and reducing their driving force. Neuroprotection by mifepristone is dose-dependently decreased by the agonist of GABA(A) receptors muscimol and by caffeine, an agonist of internal calcium store release. Moreover, the survival induced by neomycin, an inhibitor of calcium release, is partially reversed by muscimol. The p38 mitogen-activated protein kinase (MAPK) inhibitor SB239063 also rescues Purkinje neurons. In summary, we propose that when GABA is depolarizing, mifepristone protects Purkinje neurons by shunting GABA responses and probably chloride fluxes, by inhibiting p38 MAPK activity and likely internal calcium store release. A new and nonhormonal effect of mifepristone is thus revealed.


Assuntos
Mifepristona/farmacologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/fisiologia , Receptores de GABA-A/fisiologia , Animais , Cafeína/farmacologia , Cloretos/metabolismo , Imidazóis/farmacologia , Camundongos , Muscimol/farmacologia , Pirimidinas/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
7.
J Neurosci ; 22(9): 3531-42, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11978830

RESUMO

In organotypic cultures, mouse Purkinje cells regenerate their axons from embryonic day 18 (E18) to postnatal day 0 (P0), die of apoptosis between P1 and P7, and survive but do not regenerate at P10. This particular behavior of Purkinje cells did not allow us to find out when the developmental switch between regeneration and lack of regeneration occurs. This work was undertaken to suppress Purkinje cell apoptosis and to investigate whether the same molecules that prevent apoptosis could also influence axonal growth, regeneration, or both. We show that brain-derived neurotrophic factor, neurotrophin 3, and insulin-like growth factor I have marginal effects on P3 Purkinje cell death. The use of Gö6976 [a protein kinase C (PKC) inhibitor] or a transgenic mouse line, in which a pseudosubstrate PKC inhibitor has been specifically targeted to Purkinje cells, prevents the massive Purkinje cell death in P3 organotypic cultures. In addition, Gö6976 promotes axotomized Purkinje cell survival up to P7. Thus, the inhibition of PKC activity is able to prevent Purkinje cell apoptosis in organotypic cultures. Furthermore, Gö6976 increases the outgrowth of dendrites and axon collateralization, as shown after gene gun enhanced green fluorescent protein transfection. In contrast, PKC inhibitors do not influence the axonal regenerative capability of Purkinje cell during development; the latter decreases between E18 and P7 after the same time course in control and Gö6976-treated slices. Thus, because inhibition of PKC prevents Purkinje cell death but does not affect axonal regeneration, these two events (cell death and axonal regeneration) seem to be differentially regulated.


Assuntos
Apoptose/efeitos dos fármacos , Axônios/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Células de Purkinje/efeitos dos fármacos , Animais , Axônios/fisiologia , Axotomia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Carbazóis/farmacologia , Diferenciação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Cerebelo/citologia , Cerebelo/embriologia , Dendritos/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Técnicas In Vitro , Indóis/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Camundongos Transgênicos , Regeneração Nervosa/fisiologia , Neurotrofina 3/farmacologia , Proteína Quinase C/biossíntese , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Fatores de Tempo
8.
Front Neurosci ; 6: 10, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22347156

RESUMO

Progesterone is well known as a female reproductive hormone and in particular for its role in uterine receptivity, implantation, and the maintenance of pregnancy. However, neuroendocrine research over the past decades has established that progesterone has multiple functions beyond reproduction. Within the nervous system, its neuromodulatory and neuroprotective effects are much studied. Although progesterone has been shown to also promote myelin repair, its influence and that of other steroids on myelination and remyelination is relatively neglected. Reasons for this are that hormonal influences are still not considered as a central problem by most myelin biologists, and that neuroendocrinologists are not sufficiently concerned with the importance of myelin in neuron functions and viability. The effects of progesterone in the nervous system involve a variety of signaling mechanisms. The identification of the classical intracellular progesterone receptors as therapeutic targets for myelin repair suggests new health benefits for synthetic progestins, specifically designed for contraceptive use and hormone replacement therapies. There are also major advantages to use natural progesterone in neuroprotective and myelin repair strategies, because progesterone is converted to biologically active metabolites in nervous tissues and interacts with multiple target proteins. The delivery of progesterone however represents a challenge because of its first-pass metabolism in digestive tract and liver. Recently, the intranasal route of progesterone administration has received attention for easy and efficient targeting of the brain. Progesterone in the brain is derived from the steroidogenic endocrine glands or from local synthesis by neural cells. Stimulating the formation of endogenous progesterone is currently explored as an alternative strategy for neuroprotection, axonal regeneration, and myelin repair.

9.
Endocrinology ; 152(10): 3820-31, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21828184

RESUMO

Enhancing the endogenous capacity of myelin repair is a major therapeutic challenge in demyelinating diseases such as multiple sclerosis. We found that progesterone and the synthetic 19-norprogesterone derivative 16-methylene-17α-acetoxy-19-norpregn-4-ene-3,20-dione (Nestorone) promote the remyelination of axons by oligodendrocytes after lysolecithin-induced demyelination in organotypic cultures of cerebellar slices taken from postnatal rats or mice. The intracellular progesterone receptors (PR) mediate the proremyelinating actions of Nestorone, because they are not observed in slices from PR knockout mice. Notably, Nestorone was less efficient in heterozygous mice, expressing reduced levels of PR, suggesting PR haploinsufficiency in myelin repair. Using mice expressing the enhanced green fluorescent protein (EGFP) under the control of the proteolipid gene promoter, we showed that both progesterone and Nestorone strongly increased the reappearance of cells of the oligodendroglial lineage in the demyelinated slices. In contrast to Nestorone, the pregnane derivative medroxyprogesterone acetate had no effect. The increase in oligodendroglial cells by Nestorone resulted from enhanced NG2(+) and Olig2(+) oligodendrocyte progenitor cell (OPC) recruitment. In cocultures of lysolecithin-demyelinated cerebellar slices from wild-type mice apposed to brain stem slices of proteolipid gene promoter-EGFP mice, Nestorone stimulated the migration of OPC towards demyelinated axons. In this coculture paradigm, Nestorone indeed markedly increased the number of EGFP(+) cells migrating into the demyelinated cerebellar slices. Our results show that Nestorone stimulates the recruitment and maturation of OPC, two steps which are limiting for efficient myelin repair. They may thus open new perspectives for the use of progestins, which selectively target PR, to promote the endogenous regeneration of myelin.


Assuntos
Axônios/efeitos dos fármacos , Bainha de Mielina/efeitos dos fármacos , Norprogesteronas/farmacologia , Progesterona/farmacologia , Receptores de Progesterona/fisiologia , Animais , Axônios/fisiologia , Movimento Celular/efeitos dos fármacos , Masculino , Acetato de Medroxiprogesterona/farmacologia , Bainha de Mielina/fisiologia , Oligodendroglia/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA