Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Hippocampus ; 33(4): 424-441, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36709408

RESUMO

GABAergic inhibition is critical for the precision of neuronal spiking and the homeostatic regulation of network activity in the brain. Adult neurogenesis challenges network homeostasis because new granule cells (GCs) integrate continuously in the functional dentate gyrus. While developing, adult-born GCs undergo a transient state of enhanced excitability due to the delayed maturation of perisomatic GABAergic inhibition by parvalbumin interneurons (PV-INs). The mechanisms underlying this delayed synaptic maturation remain unknown. We examined the morphology and function of synapses formed by PV-INs onto new GCs over a 2-month interval in young adult mice, and investigated the influence of the synaptic adhesion molecule neuroligin-2 (NL2). Perisomatic appositions of PV-IN terminals onto new GCs were conspicuous at 2 weeks and continued to grow in size to reach a plateau over the fourth week. Postsynaptic knockdown of NL2 by expression of a short-hairpin RNA (shNL2) in new GCs resulted in smaller size of synaptic contacts, reduced area of perisomatic appositions of the vesicular GABA transporter VGAT, and the number of presynaptic active sites. GCs expressing shNL2 displayed spontaneous GABAergic responses with decreased frequency and amplitude, as well as slower kinetics compared to control GCs. In addition, postsynaptic responses evoked by optogenetic stimulation of PV-INs exhibited slow kinetics, increased paired-pulse ratio and coefficient of variation in GCs with NL2 knockdown, suggesting a reduction in the number of active synapses as well as in the probability of neurotransmitter release (Pr ). Our results demonstrate that synapses formed by PV-INs on adult-born GCs continue to develop beyond the point of anatomical growth, and require NL2 for the structural and functional maturation that accompanies the conversion into fast GABAergic transmission.


Assuntos
Proteínas do Tecido Nervoso , Neurônios , Camundongos , Animais , Neurônios/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Interneurônios/fisiologia , Sinapses/fisiologia , Encéfalo/metabolismo
2.
J Neurosci ; 39(29): 5794-5815, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31133559

RESUMO

Frontotemporal dementia (FTD) is characterized by neuronal loss in the frontal and temporal lobes of the brain. Here, we provide the first evidence of striking morphological alterations in dentate granule cells (DGCs) of FTD patients and in a mouse model of the disease, TauVLW mice. Taking advantage of the fact that the hippocampal dentate gyrus (DG) gives rise to newborn DGCs throughout the lifetime in rodents, we used RGB retroviruses to study the temporary course of these alterations in newborn DGCs of female TauVLW mice. In addition, retroviruses that encode either PSD95:GFP or Syn:GFP revealed striking alterations in the afferent and efferent connectivity of newborn TauVLW DGCs, and monosynaptic retrograde rabies virus tracing showed that these cells are disconnected from distal brain regions and local sources of excitatory innervation. However, the same cells exhibited a predominance of local inhibitory innervation. Accordingly, the expression of presynaptic and postsynaptic markers of inhibitory synapses was markedly increased in the DG of TauVLW mice and FTD patients. Moreover, an increased number of neuropeptide Y-positive interneurons in the DG correlated with a reduced number of activated egr-1+ DGCs in TauVLW mice. Finally, we tested the therapeutic potential of environmental enrichment and chemoactivation to reverse these alterations in mice. Both strategies reversed the morphological alterations of newborn DGCs and partially restored their connectivity in a mouse model of the disease. Moreover, our data point to remarkable morphological similarities between the DGCs of TauVLW mice and FTD patients.SIGNIFICANCE STATEMENT We show, for the first time to our knowledge, that the population of dentate granule cells is disconnected from other regions of the brain in the neurodegenerative disease frontotemporal dementia (FTD). These alterations were observed in FTD patients and in a mouse model of this disease. Moreover, we tested the therapeutic potential of two strategies, environmental enrichment and chemoactivation, to stimulate the activity of these neurons in mice. We found that some of the alterations were reversed by these therapeutic interventions.


Assuntos
Giro Denteado/metabolismo , Giro Denteado/patologia , Modelos Animais de Doenças , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Neurogênese/fisiologia , Fatores Etários , Animais , Feminino , Demência Frontotemporal/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Mol Cell Neurosci ; 56: 298-306, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851186

RESUMO

Neuronal connectivity and synaptic remodeling are fundamental substrates for higher brain functions. Understanding their dynamics in the mammalian allocortex emerges as a critical step to tackle the cellular basis of cognitive decline that occurs during normal aging and in neurodegenerative disorders. In this work we have designed a novel approach to assess alterations in the dynamics of functional and structural connectivity elicited by chronic cell-autonomous overexpression of the human amyloid precursor protein (hAPP). We have taken advantage of the fact that the hippocampus continuously generates new dentate granule cells (GCs) to probe morphofunctional development of GCs expressing different variants of hAPP in a healthy background. hAPP was expressed together with a fluorescent reporter in neural progenitor cells of the dentate gyrus of juvenile mice by retroviral delivery. Neuronal progeny was analyzed several days post infection (dpi). Amyloidogenic cleavage products of hAPP such as the ß-C terminal fragment (ß-CTF) induced a substantial reduction in glutamatergic connectivity at 21 dpi, at which time new GCs undergo active growth and synaptogenesis. Interestingly, this effect was transient, since the strength of glutamatergic inputs was normal by 35 dpi. This delay in glutamatergic synaptogenesis was paralleled by a decrease in dendritic length with no changes in spine density, consistent with a protracted dendritic development without alterations in synapse formation. Finally, similar defects in newborn GC development were observed by overexpression of α-CTF, a non-amyloidogenic cleavage product of hAPP. These results indicate that hAPP can elicit protracted dendritic development independently of the amyloidogenic processing pathway.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Dendritos/metabolismo , Hipocampo/citologia , Neurogênese , Precursor de Proteína beta-Amiloide/genética , Animais , Dendritos/fisiologia , Giro Denteado/citologia , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/citologia , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia
4.
ArXiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37961742

RESUMO

Single-cell RNA sequencing (scRNA-seq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data. In this paper, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and Single-CellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis.

5.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260428

RESUMO

The adult hippocampus generates new granule cells (aGCs) that exhibit distinct functional capabilities along development, conveying a unique form of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like neural stem cells (RGL) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to follow newborn aGCs along differentiation using single-nuclei RNA sequencing (snRNA-seq). Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple sequential immature stages bearing increasing levels of effector genes supporting growth, excitability and synaptogenesis. Remarkably, four discrete cellular states were defined by the expression of distinct sets of transcription factors (TFs): quiescent neural stem cells, proliferative progenitors, postmitotic immature aGCs, and mature aGCs. The transition from immature to mature aCGs involved a transcriptional switch that shutdown molecular cascades promoting cell growth, such as the SoxC family of TFs, to activate programs controlling neuronal homeostasis. Indeed, aGCs overexpressing Sox4 or Sox11 remained stalled at the immature state. Our results unveil precise molecular mechanisms driving adult neural stem cells through the pathway of neuronal differentiation.

6.
Bioinform Adv ; 4(1): vbae062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779177

RESUMO

Motivation: Single-cell RNA sequencing (scRNAseq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data. Results: In this article, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and SingleCellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis. Availability and implementation: Source code can be downloaded from https://github.com/chernolabs/scX. A docker image is available from dockerhub as chernolabs/scx.

7.
Curr Opin Neurobiol ; 69: 124-130, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33873060

RESUMO

Neurogenesis is a powerful mechanism for structural and functional remodeling that occurs in restricted areas of the adult brain. Although different neurotransmitters regulate various aspects of the progression from neural stem cell quiescence to neuronal maturation, GABA is the main player. The developmental switch from excitation to inhibition combined with a heterogeneous population of GABAergic interneurons that target different subcellular compartments provides multiple points for the regulation of development and function of new neurons. This complexity is enhanced by feedback and feedforward networks that act as sensors and controllers of circuit activity, impinging directly or indirectly onto developing granule cells and, subsequently, on mature neurons. Newly generated granule cells ultimately connect with input and output partners in a manner that is largely sculpted by the activity of local circuits.


Assuntos
Células-Tronco Neurais , Neurônios , Neurônios GABAérgicos , Hipocampo , Interneurônios , Neurogênese
8.
Front Horm Res ; 38: 1-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20616489

RESUMO

Cytokines of the IL-6 or gp130 family regulate many cellular responses and play regulatory roles in numerous tissues, and are placed as auto-paracrine regulators of pituitary function acting in normal and tumoral anterior pituitary cells. Especially, IL-6 has a regulatory role in the hormone secretion and growth of the anterior pituitary and is involved in adenoma pathogenesis. Recently, IL-6 has been shown to mediate oncogene-induced senescence (OIS). IL-6 might participate in such a process in adenomas pituitary as well. From pituitary tumoral gp130 overexpressing cells, an unknown protein, RSUME, has been cloned. RSUME is induced by hypoxia in pituitary tumors and regulate pathways involved in angiogenic and tumorigenic processes (NF-kappaB/IkappaB and HIF-1alpha pathways). Thus, it could have an important role in the development of the pituitary tumors.


Assuntos
Receptor gp130 de Citocina/fisiologia , Interleucina-6/fisiologia , Neoplasias Hipofisárias/etiologia , Fatores de Transcrição/fisiologia , Animais , Perfilação da Expressão Gênica , Humanos
9.
Horm Res ; 71 Suppl 2: 88-94, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19407504

RESUMO

Although several genes and signalling pathways have been identified as important effectors in the development of pituitary tumours, our understanding of pituitary tumorigenesis remains incomplete and is the focus of much current research. Use of the mRNA differential display technique in prolactinomas from D2-receptor knockout mice and in stable GH3 cell line clones with enhanced tumorigenicity in vivo has led to the identification of two genes that are involved in the pathogenic process--BMP-4 and RSUME. Bone morphogenetic protein-4 (BMP-4) has been found to have a crucial role in prolactinoma development and also in signalling crosstalk with oestrogens. In contrast, BMP-4 has an inhibitory role in corticotrophinomas. RSUME (RWD-containing sumoylation enhancer) was identified from a transformed lactosomatotrophic cell line that had increased tumorigenic and angiogenic potential. Expression of RSUME was induced under hypoxic conditions and it has a potential role during vascularization. The differential expression and action of BMP-4 in prolactinomas and corticotrophinomas highlights the importance of studying a gene with contrasting actions in two cell lineages of the same organ in order to understand the pituitary transformation process. Both BMP-4 and RSUME may be interesting targets for inhibiting steps involved in pituitary tumorigenesis.


Assuntos
Proteína Morfogenética Óssea 4/biossíntese , Regulação Neoplásica da Expressão Gênica , Modelos Biológicos , Proteínas de Neoplasias/biossíntese , Prolactinoma/metabolismo , Fatores de Transcrição/biossíntese , Animais , Proteína Morfogenética Óssea 4/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Prolactinoma/genética , Prolactinoma/terapia , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética
10.
Horm Res ; 72(5): 266-74, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19844112

RESUMO

Research performed on the pituitary has proven that cytokines play an important role in maintaining pituitary physiology, affecting not only cell proliferation but also hormone secretion. The effects of cytokines can be autocrine or paracrine. This review gives an overview on the effects of the most studied cytokines in the pituitary. Special interest is focused on interleukin-6 (IL-6) because it has the distinctive characteristic of stimulating pituitary tumor cell growth, but has the opposite effect on normal pituitary cells. On the other hand, IL-6 is a cytokine of interest in the pituitary because recent work has shown that it promotes and maintains senescence in certain types of tumors. Given that the majority of pituitary adenomas are microadenomas and the fact that clinically inapparent pituitary tumors are quite common, senescence, perhaps mediated by IL-6, is an attractive mechanism for explaining the benign nature of pituitary tumors.


Assuntos
Citocinas/fisiologia , Hipófise/fisiologia , Adenoma/etiologia , Animais , Senescência Celular/fisiologia , Citocinas/metabolismo , Humanos , Interleucina-6/fisiologia , Modelos Biológicos , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Hipófise/patologia , Neoplasias Hipofisárias/etiologia
11.
Endocrinology ; 147(1): 247-56, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16195406

RESUMO

The molecular mechanisms governing the pathogenesis of ACTH-secreting pituitary adenomas are still obscure. Furthermore, the pharmacological treatment of these tumors is limited. In this study, we report that bone morphogenetic protein-4 (BMP-4) is expressed in the corticotrophs of human normal adenohypophysis and its expression is reduced in corticotrophinomas obtained from Cushing's patients compared with the normal pituitary. BMP-4 treatment of AtT-20 mouse corticotrophinoma cells has an inhibitory effect on ACTH secretion and cell proliferation. AtT-20 cells stably transfected with a dominant-negative form of the BMP-4 signal cotransducer Smad-4 or the BMP-4 inhibitor noggin have increased tumorigenicity in nude mice, showing that BMP-4 has an inhibitory role on corticotroph tumorigenesis in vivo. Because the activation of the retinoic acid receptor has an inhibitory action on Cushing's disease progression, we analyzed the putative interaction of these two pathways. Indeed, retinoic acid induces both BMP-4 transcription and expression and its antiproliferative action is blocked in Smad-4dn- and noggin-transfected Att-20 cells that do not respond to BMP-4. Therefore, retinoic acid induces BMP-4, which participates in the antiproliferative effects of retinoic acid. This new mechanism is a potential target for therapeutic approaches for Cushing's disease.


Assuntos
Adenoma/patologia , Proteínas Morfogenéticas Ósseas/farmacologia , Proteínas Morfogenéticas Ósseas/fisiologia , Síndrome de Cushing/patologia , Neoplasias Hipofisárias/patologia , Tretinoína/farmacologia , Animais , Proteína Morfogenética Óssea 4 , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Camundongos , Hipófise/patologia , Hipófise/fisiologia , Valores de Referência
12.
Endocrinology ; 147(9): 4438-44, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16740975

RESUMO

Cushing's disease is almost always caused by an ACTH-secreting pituitary tumor, but effective medical therapy is currently limited. Because retinoic acid has been shown to be potentially useful in decreasing corticotroph secretion and proliferation in rodent models, we have studied its action in dogs with Cushing's disease. A randomized treatment with retinoic acid (n = 22) vs. ketoconazole (n = 20) in dogs with Cushing's disease was assigned for a period of 180 d. Clinical signs, plasma ACTH and alpha-MSH, the cortisol/creatinine urine ratio, and pituitary magnetic resonance imaging were assessed and compared at different time points. We recorded a significant reduction in plasma ACTH and alpha-MSH, and also in the cortisol/creatinine urine ratio, of the dogs treated with retinoic acid. Pituitary adenoma size was also significantly reduced at the end of retinoic acid treatment. Survival time and all the clinical signs evaluated showed an improvement in the retinoic-acid-treated dogs. No adverse events or signs of hepatotoxicity were observed, suggesting that the drug is not only effective but also safe. Retinoic acid treatment controls ACTH and cortisol hyperactivity and tumor size in dogs with ACTH-secreting tumors, leading to resolution of the clinical phenotype. This study highlights the possibility of using retinoic acid as a novel therapy in the treatment of ACTH-secreting tumors in humans with Cushing's disease.


Assuntos
Doenças do Cão/tratamento farmacológico , Hipersecreção Hipofisária de ACTH/veterinária , Tretinoína/uso terapêutico , Adenoma/patologia , Hormônio Adrenocorticotrópico/sangue , Animais , Peso Corporal , Creatinina/urina , Cães , Feminino , Hidrocortisona/urina , Cetoconazol/uso terapêutico , Imageamento por Ressonância Magnética/veterinária , Masculino , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Hipersecreção Hipofisária de ACTH/patologia , Hipófise/patologia , Neoplasias Hipofisárias/patologia , Taxa de Sobrevida , alfa-MSH/sangue
13.
Ann N Y Acad Sci ; 1088: 297-306, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17192575

RESUMO

Highly sophisticated mechanisms confer upon the immune system the capacity to respond with a certain degree of autonomy. However, the final outcome of an adaptative immune response depends on the interaction with other systems of the organism. The immune-neuroendocrine systems have an intimate cross-communication, making possible a satisfactory response to environmental changes. Part of this interaction occurs through cytokines and steroid hormones. The last step of this crosstalk is at the molecular level. In this article we will focus on the physical and functional interrelationship between cytokine signaling pathway-activated transcription factors (TFs) and steroid receptors in different cell models, where the signals triggered by cytokines and steroid hormones have major roles: (1) the ligand-dependent-activated glucocorticoid receptor (GR) influence the genetic program that specifies lineage commitment in T helper (Th) cell differentiation. How posttranslational modifications of several TFs as well as nuclear hormone receptors could be implicated in the molecular crosstalk between the immune-neuroendocrine messengers is discussed. (2) glucocorticoid (GC) antagonism on the TCR-induced T cell apoptosis. (3) estrogen receptor/TGF-beta family proteins molecular interaction implicated on pituitary prolactinomas pathogenesis. The functional crosstalk at the molecular level between immune and steroids signals is essential to determine an integrative response to both mediators (which in the last instance results in a new gene activation/repression profile) and constitutes the ultimate integrative level of interaction between the immune and neuroendocrine systems.


Assuntos
Citocinas/imunologia , Neuroimunomodulação/imunologia , Sistemas Neurossecretores/imunologia , Esteroides/imunologia , Citocinas/metabolismo , Humanos , Sistemas Neurossecretores/metabolismo , Esteroides/metabolismo
14.
Front Horm Res ; 35: 22-31, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16809920

RESUMO

Bone morphogenetic protein-4 (BMP-4), a member of the transforming growth factor-Beta(TGF-Beta) family, is overexpressed in different prolactinoma models and induces the development of these lineage adenomas. SMAD proteins activated by growth factors of the TGF-Beta and BMP family interact with estrogen receptors to stimulate the proliferation of prolactin and growth hormone-secreting cells. Furthermore, BMP-4 presents differential expression in normal and adenomatous corticotropes and inhibitory action on corticotropinoma cell proliferation. Moreover, BMP-4 mediates the antiproliferative action of retinoic acid in these cells. The present review highlights not only the crucial and opposite role of BMP-4 in the progression of pituitary adenomas but also that BMP-4 and retinoic acid interaction might serve as a potential new mechanism target for therapeutic approaches for Cushing disease.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Doenças da Hipófise/etiologia , Hormônio Adrenocorticotrópico/metabolismo , Animais , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/metabolismo , Expressão Gênica , Humanos , Modelos Biológicos , Neurônios/metabolismo , Hipófise/citologia , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Tretinoína/farmacologia
15.
Science ; 354(6311): 459-465, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27789840

RESUMO

Experience shapes the development and connectivity of adult-born granule cells (GCs) through mechanisms that are poorly understood. We examined the remodeling of dentate gyrus microcircuits in mice in an enriched environment (EE). Short exposure to EE during early development of new GCs accelerated their functional integration. This effect was mimicked by in vivo chemogenetic activation of a limited population of mature GCs. Slice recordings showed that mature GCs recruit parvalbumin γ-aminobutyric acid-releasing interneurons (PV-INs) that feed back onto developing GCs. Accordingly, chemogenetic stimulation of PV-INs or direct depolarization of developing GCs accelerated GC integration, whereas inactivation of PV-INs prevented the effects of EE. Our results reveal a mechanism for dynamic remodeling in which experience activates dentate networks that "prime" young GCs through a disynaptic feedback loop mediated by PV-INs.


Assuntos
Giro Denteado/fisiologia , Retroalimentação Fisiológica , Rede Nervosa/fisiologia , Neurogênese , Neurônios/fisiologia , Animais , Giro Denteado/citologia , Feminino , Interneurônios/citologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Neurônios/citologia , Parvalbuminas/metabolismo , Meio Social , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-16178787

RESUMO

Pituitary adenomas are neuroendocrine tumors that produce different endocrine and metabolic alterations, including hyperprolactinemia, acromegaly and Cushing's disease. These different clinical features of pituitary tumors are the result of the overproduction of hormones produced by the different pituitary cell types. Recent advances in the understanding of the signaling pathways that control hormone production in pituitary cells provide a source of potential therapeutic targets. In ACTH-secreting cells, the mechanisms that control hormone biosynthesis have been clarified to a great extent, indicating a number of protein kinases and ligand-activated nuclear receptors as targets for experimental drugs. ACTH production requires the activation of signal transduction through the PKA, the MAPK and the CamK pathways. These pathways activate nuclear receptors, including Nur and PPAR gamma. The inhibition of these kinases and nuclear receptors has been shown to produce therapeutic effects in mouse models of Cushing's syndrome. On the other hand, the signaling pathways that control prolactin and growth hormone production also have potential targets. It has been recently shown that SMAD proteins activated by growth factors of the TGF beta and BMP family interact with estrogen receptors to stimulate the proliferation of prolactin and growth hormone-secreting cells. Cytokines that bind to the membrane protein gp130 also stimulate the proliferation of these cells. The inhibition of both of these pathways results in the decrease of tumor growth in animal models of prolactinoma. Therefore, the study of signaling pathways that control hormone production and proliferation is a good source of candidate targets in pituitary tumors.


Assuntos
Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/fisiologia , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Hormônio Adrenocorticotrópico/biossíntese , Animais , Citocinas/metabolismo , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Prolactina/metabolismo , Receptores de Citocinas/efeitos dos fármacos , Receptores de Citocinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
17.
Neuron ; 85(1): 116-130, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25533485

RESUMO

Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (4-week-old) GCs can efficiently drive distal CA3 targets but poorly activate proximal interneurons responsible for feedback inhibition (FBI). As new GCs transition toward maturity, they reliably recruit GABAergic feedback loops that restrict spiking of neighbor GCs, a mechanism that would promote sparse coding. Such inhibitory loop impinges only weakly in new cohorts of young GCs. A computational model reveals that the delayed coupling of new GCs to FBI could be crucial to achieve a fine-grain representation of novel inputs in the dentate gyrus.


Assuntos
Região CA3 Hipocampal/metabolismo , Giro Denteado/metabolismo , Retroalimentação Fisiológica/fisiologia , Interneurônios/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Animais , Giro Denteado/citologia , Giro Denteado/crescimento & desenvolvimento , Neurônios GABAérgicos/metabolismo , Camundongos , Neurônios/citologia , Optogenética , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp
18.
Endocrinology ; 144(2): 693-700, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12538632

RESUMO

Two of the most potent cytokines that regulate anterior pituitary cell function are leukemia inhibitory factor and IL-6. These and others like IL-11 and ciliary neurotrophic factor are referred to as the gp130 cytokines because they share the gp130 glycoprotein as a common receptor initial signal transducer. We and others have shown that gp130 cytokines and their receptors are expressed and functional in normal and tumoral anterior pituitary cells. To study the role of gp130 cytokines in tumorigenic process, we generated gp130 cDNA gp130 sense and gp130 antisense (gp130-AS) transfected stable clones derived from lactosomatotroph GH3 cells. We examined hormone secretion and cell proliferation of these clones as well as their tumorigenic properties in athymic nude mice. Although gp130-AS clones, which have low gp130 levels and impaired signal transducer and activator of transcription 3 activity and suppressor of cytokine signaling-3 expression, showed reduced proliferation and hormone secretion (GH and prolactin) in response to gp130 cytokines, they had a normal response to gp130-independent stimuli. Moreover, gp130-AS clones showed a severely impaired in vivo tumor development. In contrast, the overexpressing gp130 clones (gp130 sense) showed no differences, compared with cells transfected with control vector. Thus, the present study provides new evidence supporting a link between gp130 and pituitary abnormal growth.


Assuntos
Antígenos CD/genética , Regulação Neoplásica da Expressão Gênica , Hormônios/metabolismo , Glicoproteínas de Membrana/genética , Neoplasias Hipofisárias/fisiopatologia , Animais , Divisão Celular , Receptor gp130 de Citocina , Citocinas/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Hipofisárias/metabolismo , RNA Mensageiro/análise , Ratos , Células Tumorais Cultivadas
19.
Mol Cell Endocrinol ; 201(1-2): 47-56, 2003 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-12706293

RESUMO

Interleukin-6 (IL-6) secreted by pituitary folliculo stellate (FS) cells plays an important role in the control of pituitary function and proliferation. We demonstrate that in FS TtT/GF cells, estradiol (E(2)) inhibits dose dependently pituitary adenylate cyclase activating polypeptide (PACAP)-stimulated IL-6 secretion and transcription. We studied transcription factors involved in IL-6 stimulation by PACAP. Point mutations in kappaB, TRE, NF-IL-6 and CRE sites in the IL-6 promoter show that PACAP stimulates IL-6 through TRE and CRE sites. Accordingly, PACAP stimulated AP-1 and CREB transcriptional activity and E(2) inhibited TRE-LUC but not CRE-LUC activation. Thus, we demonstrate that transcription factors of the CREB and AP-1 family are critical for the stimulation of IL-6 by PACAP in TtT/GF cells and that estrogens block this stimulation by inhibiting AP-1 activity. The regulatory elements involved in IL-6 transcription in TtT/GF FS cells contribute to understand the specificity of the anterior pituitary gland paracrine pathways.


Assuntos
Regulação da Expressão Gênica , Interleucina-6/genética , Adeno-Hipófise/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Interleucina-6/metabolismo , Camundongos , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Adeno-Hipófise/citologia , Adeno-Hipófise/efeitos dos fármacos , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Elementos de Resposta , Fator de Transcrição AP-1/genética
20.
Eur J Endocrinol ; 151(5): 595-604, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15538938

RESUMO

OBJECTIVE: gp130 cytokines are placed as auto-paracrine regulators of pituitary function, since they, as well as their receptors, have been shown to be expressed in and to act in normal and tumoral anterior pituitary cells. The objective of this work was to study their involvement in a model that shows the interaction between different cellular types that participate in a tumorigenic process. DESIGN: The dependence of a pituitary somatotrophic cell line (MtT/S) on a gp130 cytokine-producing folliculostellate (FS) cell line (TtT/GF) for tumorigenesis in vivo has been described. In order to study the participation of gp130 cytokines in the auto-paracrine stimulation of MtT/S growth, we generated MtT/S gp130 sense (gp130-S) and gp130 antisense (gp130-AS) clones stably transfected with pcDNA3/gp130 sense and pcDNA3/gp130 antisense vectors respectively. METHODS AND RESULTS: Functional characterization studies revealed that gp130-AS clones have an inhibited gp130 signalling, and proliferation studies showed that they have an impaired response to gp130 cytokines but respond normally to other independent stimuli. When injected into nude mice, MtT/S clones respond differently depending on cell number; at high concentrations MtT/S clones alone generated tumours equivalent in size to tumours derived from MtT/S plus TtT/GF cells. At low concentrations, MtT/S sense and control clones generated tumours of smaller size than tumours derived from these same clones plus TtT/GF cells, showing a dependence on FS cells. In both cases MtT/S gp130-AS clones had impaired tumour development. Furthermore, vessel density was significantly lower in tumours derived from gp130-AS plus TtT/GF cells. CONCLUSIONS: This study underlines the importance of gp130 cytokines in proliferation and establishes its role in auto-paracrine pituitary growth regulation.


Assuntos
Antígenos CD/metabolismo , Hormônio do Crescimento/metabolismo , Glicoproteínas de Membrana/metabolismo , Adeno-Hipófise/metabolismo , Neoplasias Hipofisárias/etiologia , Animais , Vasos Sanguíneos/patologia , Divisão Celular , Linhagem Celular , Receptor gp130 de Citocina , Camundongos , Camundongos Nus , Transplante de Neoplasias , Comunicação Parácrina , Neoplasias Hipofisárias/irrigação sanguínea , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/fisiopatologia , Ratos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA