Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(10): 1932-1947.e10, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38703769

RESUMO

Mutations in transporters can impact an individual's response to drugs and cause many diseases. Few variants in transporters have been evaluated for their functional impact. Here, we combine saturation mutagenesis and multi-phenotypic screening to dissect the impact of 11,213 missense single-amino-acid deletions, and synonymous variants across the 554 residues of OCT1, a key liver xenobiotic transporter. By quantifying in parallel expression and substrate uptake, we find that most variants exert their primary effect on protein abundance, a phenotype not commonly measured alongside function. Using our mutagenesis results combined with structure prediction and molecular dynamic simulations, we develop accurate structure-function models of the entire transport cycle, providing biophysical characterization of all known and possible human OCT1 polymorphisms. This work provides a complete functional map of OCT1 variants along with a framework for integrating functional genomics, biophysical modeling, and human genetics to predict variant effects on disease and drug efficacy.


Assuntos
Simulação de Dinâmica Molecular , Transportador 1 de Cátions Orgânicos , Conformação Proteica , Humanos , Transporte Biológico , Células HEK293 , Mutação , Mutação de Sentido Incorreto , Fator 1 de Transcrição de Octâmero , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Farmacogenética , Fenótipo , Relação Estrutura-Atividade
2.
Nature ; 629(8012): 704-709, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693257

RESUMO

Choline is an essential nutrient that the human body needs in vast quantities for cell membrane synthesis, epigenetic modification and neurotransmission. The brain has a particularly high demand for choline, but how it enters the brain remains unknown1-3. The major facilitator superfamily transporter FLVCR1 (also known as MFSD7B or SLC49A1) was recently determined to be a choline transporter but is not highly expressed at the blood-brain barrier, whereas the related protein FLVCR2 (also known as MFSD7C or SLC49A2) is expressed in endothelial cells at the blood-brain barrier4-7. Previous studies have shown that mutations in human Flvcr2 cause cerebral vascular abnormalities, hydrocephalus and embryonic lethality, but the physiological role of FLVCR2 is unknown4,5. Here we demonstrate both in vivo and in vitro that FLVCR2 is a BBB choline transporter and is responsible for the majority of choline uptake into the brain. We also determine the structures of choline-bound FLVCR2 in both inward-facing and outward-facing states using cryo-electron microscopy. These results reveal how the brain obtains choline and provide molecular-level insights into how FLVCR2 binds choline in an aromatic cage and mediates its uptake. Our work could provide a novel framework for the targeted delivery of therapeutic agents into the brain.


Assuntos
Encéfalo , Colina , Proteínas de Membrana Transportadoras , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Colina/metabolismo , Microscopia Crioeletrônica , Técnicas In Vitro , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/ultraestrutura , Modelos Moleculares
3.
Genes Dev ; 34(15-16): 1033-1038, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32675325

RESUMO

Kynurenic acid (KynA) levels link peripheral metabolic status to neural functions including learning and memory. Since neural KynA levels dampen learning capacity, KynA reduction has been proposed as a therapeutic strategy for conditions of cognitive deficit such as neurodegeneration. While KynA is generated locally within the nervous system, its precursor, kynurenine (Kyn), is largely derived from peripheral resources. The mechanisms that import Kyn into the nervous system are poorly understood. Here, we provide genetic, anatomical, biochemical, and behavioral evidence showing that in C. elegans an ortholog of the human LAT1 transporter, AAT-1, imports Kyn into sites of KynA production.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Ácido Cinurênico/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/fisiologia , Neurônios/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ingestão de Alimentos , Cinurenina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Aprendizagem/fisiologia , Mutação
4.
Am J Hum Genet ; 111(6): 1222-1238, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38781976

RESUMO

Heterozygous variants in SLC6A1, encoding the GAT-1 GABA transporter, are associated with seizures, developmental delay, and autism. The majority of affected individuals carry missense variants, many of which are recurrent germline de novo mutations, raising the possibility of gain-of-function or dominant-negative effects. To understand the functional consequences, we performed an in vitro GABA uptake assay for 213 unique variants, including 24 control variants. De novo variants consistently resulted in a decrease in GABA uptake, in keeping with haploinsufficiency underlying all neurodevelopmental phenotypes. Where present, ClinVar pathogenicity reports correlated well with GABA uptake data; the functional data can inform future reports for the remaining 72% of unscored variants. Surface localization was assessed for 86 variants; two-thirds of loss-of-function missense variants prevented GAT-1 from being present on the membrane while GAT-1 was on the surface but with reduced activity for the remaining third. Surprisingly, recurrent de novo missense variants showed moderate loss-of-function effects that reduced GABA uptake with no evidence for dominant-negative or gain-of-function effects. Using linear regression across multiple missense severity scores to extrapolate the functional data to all potential SLC6A1 missense variants, we observe an abundance of GAT-1 residues that are sensitive to substitution. The extent of this missense vulnerability accounts for the clinically observed missense enrichment; overlap with hypermutable CpG sites accounts for the recurrent missense variants. Strategies to increase the expression of the wild-type SLC6A1 allele are likely to be beneficial across neurodevelopmental disorders, though the developmental stage and extent of required rescue remain unknown.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA , Haploinsuficiência , Mutação de Sentido Incorreto , Humanos , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Haploinsuficiência/genética , Ácido gama-Aminobutírico/metabolismo , Transtornos do Neurodesenvolvimento/genética , Deficiências do Desenvolvimento/genética , Transtorno Autístico/genética , Células HEK293
5.
Nat Chem Biol ; 20(1): 62-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37474759

RESUMO

Cells interpret a variety of signals through G-protein-coupled receptors (GPCRs) and stimulate the generation of second messengers such as cyclic adenosine monophosphate (cAMP). A long-standing puzzle is deciphering how GPCRs elicit different physiological responses despite generating similar levels of cAMP. We previously showed that some GPCRs generate cAMP from both the plasma membrane and the Golgi apparatus. Here we demonstrate that cardiomyocytes distinguish between subcellular cAMP inputs to elicit different physiological outputs. We show that generating cAMP from the Golgi leads to the regulation of a specific protein kinase A (PKA) target that increases the rate of cardiomyocyte relaxation. In contrast, cAMP generation from the plasma membrane activates a different PKA target that increases contractile force. We further validated the physiological consequences of these observations in intact zebrafish and mice. Thus, we demonstrate that the same GPCR acting through the same second messenger regulates cardiac contraction and relaxation dependent on its subcellular location.


Assuntos
Transdução de Sinais , Peixe-Zebra , Camundongos , Animais , AMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro , Miócitos Cardíacos , Receptores Acoplados a Proteínas G/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(46): e2210247119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343260

RESUMO

Genetic variants in SLC22A5, encoding the membrane carnitine transporter OCTN2, cause the rare metabolic disorder Carnitine Transporter Deficiency (CTD). CTD is potentially lethal but actionable if detected early, with confirmatory diagnosis involving sequencing of SLC22A5. Interpretation of missense variants of uncertain significance (VUSs) is a major challenge. In this study, we sought to characterize the largest set to date (n = 150) of OCTN2 variants identified in diverse ancestral populations, with the goals of furthering our understanding of the mechanisms leading to OCTN2 loss-of-function (LOF) and creating a protein-specific variant effect prediction model for OCTN2 function. Uptake assays with 14C-carnitine revealed that 105 variants (70%) significantly reduced transport of carnitine compared to wild-type OCTN2, and 37 variants (25%) severely reduced function to less than 20%. All ancestral populations harbored LOF variants; 62% of green fluorescent protein (GFP)-tagged variants impaired OCTN2 localization to the plasma membrane of human embryonic kidney (HEK293T) cells, and subcellular localization significantly associated with function, revealing a major LOF mechanism of interest for CTD. With these data, we trained a model to classify variants as functional (>20% function) or LOF (<20% function). Our model outperformed existing state-of-the-art methods as evaluated by multiple performance metrics, with mean area under the receiver operating characteristic curve (AUROC) of 0.895 ± 0.025. In summary, in this study we generated a rich dataset of OCTN2 variant function and localization, revealed important disease-causing mechanisms, and improved upon machine learning-based prediction of OCTN2 variant function to aid in variant interpretation in the diagnosis and treatment of CTD.


Assuntos
Carnitina , Proteínas de Transporte de Cátions Orgânicos , Humanos , Membro 5 da Família 22 de Carreadores de Soluto/genética , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Células HEK293 , Carnitina/genética , Carnitina/metabolismo , Genômica
7.
Am J Hum Genet ; 108(4): 535-548, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798442

RESUMO

Genome sequencing is enabling precision medicine-tailoring treatment to the unique constellation of variants in an individual's genome. The impact of recurrent pathogenic variants is often understood, however there is a long tail of rare genetic variants that are uncharacterized. The problem of uncharacterized rare variation is especially acute when it occurs in genes of known clinical importance with functionally consequential variants and associated mechanisms. Variants of uncertain significance (VUSs) in these genes are discovered at a rate that outpaces current ability to classify them with databases of previous cases, experimental evaluation, and computational predictors. Clinicians are thus left without guidance about the significance of variants that may have actionable consequences. Computational prediction of the impact of rare genetic variation is increasingly becoming an important capability. In this paper, we review the technical and ethical challenges of interpreting the function of rare variants in two settings: inborn errors of metabolism in newborns and pharmacogenomics. We propose a framework for a genomic learning healthcare system with an initial focus on early-onset treatable disease in newborns and actionable pharmacogenomics. We argue that (1) a genomic learning healthcare system must allow for continuous collection and assessment of rare variants, (2) emerging machine learning methods will enable algorithms to predict the clinical impact of rare variants on protein function, and (3) ethical considerations must inform the construction and deployment of all rare-variation triage strategies, particularly with respect to health disparities arising from unbalanced ancestry representation.


Assuntos
Variação Genética/genética , Genética Médica , Genômica , Aprendizado de Máquina , Erros Inatos do Metabolismo/genética , Farmacogenética , Medicina de Precisão , Genoma Humano/genética , Humanos , Recém-Nascido
8.
Pediatr Diabetes ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-38590442

RESUMO

Metformin is the first-line treatment for type 2 diabetes (T2D) in youth but with limited sustained glycemic response. To identify common variants associated with metformin response, we used a genome-wide approach in 506 youth from the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study and examined the relationship between T2D partitioned polygenic scores (pPS), glycemic traits, and metformin response in these youth. Several variants met a suggestive threshold (P < 1 × 10-6), though none including published adult variants reached genome-wide significance. We pursued replication of top nine variants in three cohorts, and rs76195229 in ATRNL1 was associated with worse metformin response in the Metformin Genetics Consortium (n = 7,812), though statistically not being significant after Bonferroni correction (P = 0.06). A higher ß-cell pPS was associated with a lower insulinogenic index (P = 0.02) and C-peptide (P = 0.047) at baseline and higher pPS related to two insulin resistance processes were associated with increased C-peptide at baseline (P = 0.04,0.02). Although pPS were not associated with changes in glycemic traits or metformin response, our results indicate a trend in the association of the ß-cell pPS with reduced ß-cell function over time. Our data show initial evidence for genetic variation associated with metformin response in youth with T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Adulto , Humanos , Adolescente , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Peptídeo C , Falha de Tratamento , Variação Genética , Glicemia , Hipoglicemiantes/uso terapêutico
9.
Proc Natl Acad Sci U S A ; 117(27): 16009-16018, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571913

RESUMO

Food and drug products contain diverse and abundant small-molecule additives (excipients) with unclear impacts on human physiology, drug safety, and response. Here, we evaluate their potential impact on intestinal drug absorption. By screening 136 unique compounds for inhibition of the key intestinal transporter OATP2B1 we identified and validated 24 potent OATP2B1 inhibitors, characterized by higher molecular weight and hydrophobicity compared to poor or noninhibitors. OATP2B1 inhibitors were also enriched for dyes, including 8 azo (R-N=N-R') dyes. Pharmacokinetic studies in mice confirmed that FD&C Red No. 40, a common azo dye excipient and a potent inhibitor of OATP2B1, decreased the plasma level of the OATP2B1 substrate fexofenadine, suggesting that FD&C Red No. 40 has the potential to block drug absorption through OATP2B1 inhibition in vivo. However, the gut microbiomes of multiple unrelated healthy individuals as well as diverse human gut bacterial isolates were capable of inactivating the identified azo dye excipients, producing metabolites that no longer inhibit OATP2B1 transport. These results support a beneficial role for the microbiome in limiting the unintended effects of food and drug additives in the intestine and provide a framework for the data-driven selection of excipients. Furthermore, the ubiquity and genetic diversity of gut bacterial azoreductases coupled to experiments in conventionally raised and gnotobiotic mice suggest that variations in gut microbial community structure may be less important to consider relative to the high concentrations of azo dyes in food products, which have the potential to saturate gut bacterial enzymatic activity.


Assuntos
Bactérias/metabolismo , Excipientes/metabolismo , Aditivos Alimentares/metabolismo , Alimentos , Microbioma Gastrointestinal/fisiologia , Absorção Intestinal/fisiologia , Transportadores de Ânions Orgânicos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Antialérgicos/metabolismo , Antialérgicos/farmacocinética , Compostos Azo , Bactérias/isolamento & purificação , Excipientes/farmacocinética , Feminino , Aditivos Alimentares/farmacocinética , Antagonistas não Sedativos dos Receptores H1 da Histamina/metabolismo , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacocinética , Humanos , Absorção Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Terfenadina/análogos & derivados , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
10.
J Vet Pharmacol Ther ; 46(6): 401-412, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37198956

RESUMO

The ATP-binding cassette transporter P-glycoprotein (P-gp) limits the oral bioavailability of many drugs. Although P-gp has been well studied in humans and mice, little is known about the substrate specificities of many of its species orthologs. To address this, we performed in vitro analysis of P-gp transporter function using HEK293 cells stably expressing human, ovine, porcine, canine, and feline P-gp. We also employed a human physiologically based pharmacokinetic (PBPK) model to assess variations in digoxin exposure resulting from altered P-gp function. Compared to human P-gp, sheep P-gp had significantly less digoxin efflux (2.3-fold ±0.04 vs. 1.8-fold ±0.03, p < .0001) and all species orthologs had significantly less quinidine efflux compared with human P-gp (p < .05). Human P-gp also had significantly greater efflux of talinolol compared to sheep and dog P-gp (1.9-fold ±0.04 vs. 1.6-fold ±0.06, p = .003 and 1.6-fold ±0.05, p = .0002, respectively). P-gp expression protected all lines against paclitaxel-induced toxicity, with sheep P-gp being significantly less protective. The inhibitor verapamil demonstrated dose-dependent inhibition of all P-gp orthologs. Finally, a PBPK model showed digoxin exposure was sensitive to altered P-gp activity. Overall, our study found that species differences in this major drug transporter exist and that the appropriate species ortholog of P-gp should be evaluated during veterinary drug development.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Digoxina , Humanos , Animais , Cães , Gatos , Ovinos , Camundongos , Suínos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Células HEK293 , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Digoxina/metabolismo , Verapamil
11.
PLoS Biol ; 17(1): e2006571, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653498

RESUMO

Beiging of white adipose tissue (WAT) is a particularly appealing target for therapeutics in the treatment of metabolic diseases through norepinephrine (NE)-mediated signaling pathways. Although previous studies report NE clearance mechanisms via SLC6A2 on sympathetic neurons or proinflammatory macrophages in adipose tissues (ATs), the low catecholamine clearance capacity of SLC6A2 may limit the cleaning efficiency. Here, we report that mouse organic cation transporter 3 (Oct3; Slc22a3) is highly expressed in WAT and displays the greatest uptake rate of NE as a selective non-neural route of NE clearance in white adipocytes, which differs from other known routes such as adjacent neurons or macrophages. We further show that adipocytes express high levels of NE degradation enzymes Maoa, Maob, and Comt, providing the molecular basis on NE clearance by adipocytes together with its reuptake transporter Oct3. Under NE administration, ablation of Oct3 induces higher body temperature, thermogenesis, and lipolysis compared with littermate controls. After prolonged cold challenge, inguinal WAT (ingWAT) in adipose-specific Oct3-deficient mice shows much stronger browning characteristics and significantly elevated expression of thermogenic and mitochondrial biogenesis genes than in littermate controls, and this response involves enhanced ß-adrenergic receptor (ß-AR)/protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP)-responsive element binding protein (Creb) pathway activation. Glycolytic genes are reprogrammed to significantly higher levels to compensate for the loss of ATP production in adipose-specific Oct3 knockout (KO) mice, indicating the fundamental role of glucose metabolism during beiging. Inhibition of ß-AR largely abolishes the higher lipolytic and thermogenic activities in Oct3-deficient ingWAT, indicating the NE overload in the vicinity of adipocytes in Oct3 KO adipocytes. Of note, reduced functional alleles in human OCT3 are also identified to be associated with increased basal metabolic rate (BMR). Collectively, our results demonstrate that Oct3 governs ß-AR activity as a NE recycling transporter in white adipocytes, offering potential therapeutic applications for metabolic disorders.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Catecolaminas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metabolismo Energético , Células HEK293 , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Obesidade/metabolismo , Fator 3 de Transcrição de Octâmero/biossíntese , Fator 3 de Transcrição de Octâmero/genética , Proteínas de Transporte de Cátions Orgânicos/biossíntese , Proteínas de Transporte de Cátions Orgânicos/genética , Transdução de Sinais , Termogênese/fisiologia
12.
Pharm Res ; 39(7): 1599-1613, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35089508

RESUMO

INTRODUCTION: The organic cation transporter 3 (OCT3, SLC22A3) is ubiquitously expressed and interacts with a wide array of compounds including endogenous molecules, environmental toxins and prescription drugs. Understudied as a determinant of pharmacokinetics and pharmacodynamics, OCT3 has the potential to be a major determinant of drug absorption and disposition and to be a target for drug-drug interactions (DDIs). GOAL: The goal of the current study was to identify prescription drug inhibitors of OCT3. METHODS: We screened a compound library consisting of 2556 prescription drugs, bioactive molecules, and natural products using a high throughput assay in HEK-293 cells stably expressing OCT3. RESULTS: We identified 210 compounds that at 20 µM inhibit 50% or more of OCT3-mediated uptake of 4-Di-1-ASP (2 µM). Of these, nine were predicted to inhibit the transporter at clinically relevant unbound plasma concentrations. A Structure-Activity Relationship (SAR) model included molecular descriptors that could discriminate between inhibitors and non-inhibitors of OCT3 and was used to identify additional OCT3 inhibitors. Proteomics of human brain microvessels (BMVs) indicated that OCT3 is the highest expressed OCT in the human blood-brain barrier (BBB). CONCLUSIONS: This study represents the largest screen to identify prescription drug inhibitors of OCT3. Several are sufficiently potent to inhibit the transporter at therapeutic unbound plasma levels, potentially leading to DDIs or off-target pharmacologic effects.


Assuntos
Proteínas de Transporte de Cátions Orgânicos , Medicamentos sob Prescrição , Cátions , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores
13.
PLoS Genet ; 15(9): e1008208, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31553721

RESUMO

Variation in steroid hormone levels has wide implications for health and disease. The genes encoding the proteins involved in steroid disposition represent key determinants of interindividual variation in steroid levels and ultimately, their effects. Beginning with metabolomic data from genome-wide association studies (GWAS), we observed that genetic variants in the orphan transporter, SLC22A24 were significantly associated with levels of androsterone glucuronide and etiocholanolone glucuronide (sentinel SNPs p-value <1x10-30). In cells over-expressing human or various mammalian orthologs of SLC22A24, we showed that steroid conjugates and bile acids were substrates of the transporter. Phylogenetic, genomic, and transcriptomic analyses suggested that SLC22A24 has a specialized role in the kidney and appears to function in the reabsorption of organic anions, and in particular, anionic steroids. Phenome-wide analysis showed that functional variants of SLC22A24 are associated with human disease such as cardiovascular diseases and acne, which have been linked to dysregulated steroid metabolism. Collectively, these functional genomic studies reveal a previously uncharacterized protein involved in steroid homeostasis, opening up new possibilities for SLC22A24 as a pharmacological target for regulating steroid levels.


Assuntos
Proteínas de Transporte de Cátions Orgânicos/metabolismo , Esteroides/metabolismo , Simportadores/metabolismo , Androsterona/análogos & derivados , Androsterona/genética , Androsterona/metabolismo , Animais , Transporte Biológico , Estudo de Associação Genômica Ampla/métodos , Células HEK293 , Humanos , Metabolômica/métodos , Modelos Moleculares , Proteínas de Transporte de Cátions Orgânicos/química , Proteínas de Transporte de Cátions Orgânicos/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Simportadores/química , Simportadores/genética
14.
Drug Metab Dispos ; 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921098

RESUMO

The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.

15.
FASEB J ; 34(12): 15734-15752, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33124720

RESUMO

The human solute carrier 22A (SLC22A) family consists of 23 members, representing one of the largest families in the human SLC superfamily. Despite their pharmacological and physiological importance in the absorption and disposition of a range of solutes, eight SLC22A family members remain classified as orphans. In this study, we used a multifaceted approach to identify ligands of orphan SLC22A15. Ligands of SLC22A15 were proposed based on phylogenetic analysis and comparative modeling. The putative ligands were then confirmed by metabolomic screening and uptake assays in SLC22A15 transfected HEK293 cells. Metabolomic studies and transporter assays revealed that SLC22A15 prefers zwitterionic compounds over cations and anions. We identified eight zwitterions, including ergothioneine, carnitine, carnosine, gabapentin, as well as four cations, including MPP+ , thiamine, and cimetidine, as substrates of SLC22A15. Carnosine was a specific substrate of SLC22A15 among the transporters in the SLC22A family. SLC22A15 transport of several substrates was sodium-dependent and exhibited a higher Km for ergothioneine, carnitine, and carnosine compared to previously identified transporters for these ligands. This is the first study to characterize the function of SLC22A15. Our studies demonstrate that SLC22A15 may play an important role in determining the systemic and tissue levels of ergothioneine, carnosine, and other zwitterions.


Assuntos
Proteínas de Transporte de Cátions Orgânicos/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Carnitina/farmacologia , Carnosina/farmacologia , Linhagem Celular , Ergotioneína/farmacologia , Gabapentina/farmacologia , Genômica/métodos , Células HEK293 , Humanos , Ligantes , Filogenia , Transfecção/métodos
16.
PLoS Biol ; 16(4): e2002907, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29659562

RESUMO

A constellation of metabolic disorders, including obesity, dysregulated lipids, and elevations in blood glucose levels, has been associated with cardiovascular disease and diabetes. Analysis of data from recently published genome-wide association studies (GWAS) demonstrated that reduced-function polymorphisms in the organic cation transporter, OCT1 (SLC22A1), are significantly associated with higher total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride (TG) levels and an increased risk for type 2 diabetes mellitus, yet the mechanism linking OCT1 to these metabolic traits remains puzzling. Here, we show that OCT1, widely characterized as a drug transporter, plays a key role in modulating hepatic glucose and lipid metabolism, potentially by mediating thiamine (vitamin B1) uptake and hence its levels in the liver. Deletion of Oct1 in mice resulted in reduced activity of thiamine-dependent enzymes, including pyruvate dehydrogenase (PDH), which disrupted the hepatic glucose-fatty acid cycle and shifted the source of energy production from glucose to fatty acids, leading to a reduction in glucose utilization, increased gluconeogenesis, and altered lipid metabolism. In turn, these effects resulted in increased total body adiposity and systemic levels of glucose and lipids. Importantly, wild-type mice on thiamine deficient diets (TDs) exhibited impaired glucose metabolism that phenocopied Oct1 deficient mice. Collectively, our study reveals a critical role of hepatic thiamine deficiency through OCT1 deficiency in promoting the metabolic inflexibility that leads to the pathogenesis of cardiometabolic disease.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Longevidade/genética , Obesidade/genética , Fator 1 de Transcrição de Octâmero/genética , Deficiência de Tiamina/genética , Tiamina/metabolismo , Animais , Glicemia/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Gluconeogênese/genética , Humanos , Cetona Oxirredutases/genética , Cetona Oxirredutases/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Fator 1 de Transcrição de Octâmero/deficiência , Transdução de Sinais , Deficiência de Tiamina/metabolismo , Deficiência de Tiamina/patologia , Triglicerídeos/sangue
17.
BMC Bioinformatics ; 21(1): 68, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093643

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) provide a powerful means to identify associations between genetic variants and phenotypes. However, GWAS techniques for detecting epistasis, the interactions between genetic variants associated with phenotypes, are still limited. We believe that developing an efficient and effective GWAS method to detect epistasis will be a key for discovering sophisticated pathogenesis, which is especially important for complex diseases such as Alzheimer's disease (AD). RESULTS: In this regard, this study presents GenEpi, a computational package to uncover epistasis associated with phenotypes by the proposed machine learning approach. GenEpi identifies both within-gene and cross-gene epistasis through a two-stage modeling workflow. In both stages, GenEpi adopts two-element combinatorial encoding when producing features and constructs the prediction models by L1-regularized regression with stability selection. The simulated data showed that GenEpi outperforms other widely-used methods on detecting the ground-truth epistasis. As real data is concerned, this study uses AD as an example to reveal the capability of GenEpi in finding disease-related variants and variant interactions that show both biological meanings and predictive power. CONCLUSIONS: The results on simulation data and AD demonstrated that GenEpi has the ability to detect the epistasis associated with phenotypes effectively and efficiently. The released package can be generalized to largely facilitate the studies of many complex diseases in the near future.


Assuntos
Epistasia Genética , Aprendizado de Máquina , Software , Estudo de Associação Genômica Ampla , Humanos , Fenótipo
18.
Mol Pharm ; 17(3): 748-756, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31990564

RESUMO

Mechanistic-understanding-based selection of excipients may improve formulation development strategies for generic drug products and potentially accelerate their approval. Our study aimed at investigating the effects of molecular excipients present in orally administered FDA-approved drug products on the intestinal efflux transporter, BCRP (ABCG2), which plays a critical role in drug absorption with potential implications on drug safety and efficacy. We determined the interactions of 136 oral molecular excipients with BCRP in isolated membrane vesicles and identified 26 excipients as BCRP inhibitors with IC50 values less than 5 µM using 3H-cholecystokinin octapeptide (3H-CCK8). These BCRP inhibitors belonged to three functional categories of excipients: dyes, surfactants, and flavoring agents. Compared with noninhibitors, BCRP inhibitors had significantly higher molecular weights and SLogP values. The inhibitory effects of excipients identified in membrane vesicles were also evaluated in BCRP-overexpressing HEK293 cells at similar concentrations. Only 1 of the 26 inhibitors of BCRP identified in vesicles inhibited BCRP-mediated 3H-oxypurinol uptake by more than 50%, consistent with the notion that BCRP inhibition depends on transmembrane or intracellular availability of the inhibitors. Collectively, the results of this study provide new information on excipient selection during the development of drug products with active pharmaceutical ingredients that are BCRP substrates.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Corantes/metabolismo , Excipientes/metabolismo , Aromatizantes/metabolismo , Proteínas de Neoplasias/metabolismo , Tensoativos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Administração Oral , Corantes/química , Corantes/farmacologia , Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Excipientes/química , Excipientes/farmacologia , Feminino , Aromatizantes/química , Aromatizantes/farmacologia , Células HEK293 , Humanos , Concentração Inibidora 50 , Absorção Intestinal/efeitos dos fármacos , Peso Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transdução de Sinais/genética , Tensoativos/química , Tensoativos/farmacologia , Transfecção
19.
Hum Mutat ; 40(7): 983-995, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30950137

RESUMO

Deleterious variants in SLC2A2 cause Fanconi-Bickel Syndrome (FBS), a glycogen storage disorder, whereas less common variants in SLC2A2 associate with numerous metabolic diseases. Phenotypic heterogeneity in FBS has been observed, but its causes remain unknown. Our goal was to functionally characterize rare SLC2A2 variants found in FBS and metabolic disease-associated variants to understand the impact of these variants on GLUT2 activity and expression and establish genotype-phenotype correlations. Complementary RNA-injected Xenopus laevis oocytes were used to study mutant transporter activity and membrane expression. GLUT2 homology models were constructed for mutation analysis using GLUT1, GLUT3, and XylE as templates. Seventeen FBS variants were characterized. Only c.457_462delCTTATA (p.Leu153_Ile154del) exhibited residual glucose uptake. Functional characterization revealed that only half of the variants were expressed on the plasma membrane. Most less common variants (except c.593 C>A (p.Thr198Lys) and c.1087 G>T (p.Ala363Ser)) exhibited similar GLUT2 transport activity as the wild type. Structural analysis of GLUT2 revealed that variants affect substrate-binding, steric hindrance, or overall transporter structure. The mutant transporter that is associated with a milder FBS phenotype, p.Leu153_Ile154del, retained transport activity. These results improve our overall understanding of the underlying causes of FBS and impact of GLUT2 function on various clinical phenotypes ranging from rare to common disease.


Assuntos
Síndrome de Fanconi/genética , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/metabolismo , Mutação , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Síndrome de Fanconi/metabolismo , Feminino , Estudos de Associação Genética , Glucose/metabolismo , Transportador de Glucose Tipo 2/genética , Humanos , Modelos Moleculares , Oócitos/metabolismo , Xenopus
20.
Bioorg Med Chem Lett ; 29(16): 2254-2258, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31248771

RESUMO

A series of 1,2,3-triazole analogs of the amino acids l-histidine and l-tryptophan were modeled, synthesized and tested for l-type amino acid transporter 1 (LAT1; SLC7A5) activity to guide the design of amino acid-drug conjugates (prodrugs). These triazoles were conveniently prepared by the highly convergent Huisgen 1,3-dipolar cycloaddition (Click Chemistry). Despite comparable predicted binding modes, triazoles generally demonstrated reduced cell uptake and LAT1 binding potency relative to their natural amino acid counterparts. The structure-activity relationship (SAR) data for these triazoles has important ramifications for treating cancer and brain disorders using amino acid prodrugs or LAT1 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Histidina/farmacologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , Triazóis/farmacologia , Triptofano/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo , Química Click , Relação Dose-Resposta a Droga , Histidina/química , Humanos , Estrutura Molecular , Neoplasias/metabolismo , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA