Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell Mol Life Sci ; 77(1): 129-147, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31363816

RESUMO

Obesity is an endemic pathophysiological condition and a comorbidity associated with hypercholesterolemia, hypertension, cardiovascular disease, type 2 diabetes mellitus, and cancer. The adipose tissue of obese subjects shows hypertrophic adipocytes, adipocyte hyperplasia, and chronic low-grade inflammation. S100 proteins are Ca2+-binding proteins exclusively expressed in vertebrates in a cell-specific manner. They have been implicated in the regulation of a variety of functions acting as intracellular Ca2+ sensors transducing the Ca2+ signal and extracellular factors affecting cellular activity via ligation of a battery of membrane receptors. Certain S100 proteins, namely S100A4, the S100A8/S100A9 heterodimer and S100B, have been implicated in the pathophysiology of obesity-promoting macrophage-based inflammation via toll-like receptor 4 and/or receptor for advanced glycation end-products ligation. Also, serum levels of S100A4, S100A8/S100A9, S100A12, and S100B correlate with insulin resistance/type 2 diabetes, metabolic risk score, and fat cell size. Yet, secreted S100B appears to exert neurotrophic effects on sympathetic fibers in brown adipose tissue contributing to the larger sympathetic innervation of this latter relative to white adipose tissue. In the present review we first briefly introduce S100 proteins and then critically examine their role(s) in adipose tissue and obesity.


Assuntos
Tecido Adiposo/metabolismo , Obesidade/metabolismo , Proteínas S100/metabolismo , Tecido Adiposo/fisiopatologia , Animais , Citocinas/análise , Citocinas/metabolismo , Humanos , Inflamação/complicações , Inflamação/metabolismo , Inflamação/fisiopatologia , Macrófagos/metabolismo , Macrófagos/patologia , Obesidade/complicações , Obesidade/fisiopatologia , Proteínas S100/análise
2.
Cell Mol Life Sci ; 77(18): 3547-3565, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32072237

RESUMO

Reductive stress is defined as a condition of sustained increase in cellular glutathione/glutathione disulfide and NADH/NAD+ ratios. Reductive stress is emerging as an important pathophysiological event in several diseased states, being as detrimental as is oxidative stress. Occurrence of reductive stress has been documented in several cardiomyopathies and is an important pathophysiological factor particularly in coronary artery disease and myocardial infarction. Excess activation of the transcription factor, Nrf2-the master regulator of the antioxidant response-, consequent in most cases to defective autophagy, can lead to reductive stress. In addition, hyperglycemia-induced activation of the polyol pathway can lead to increased NADH/NAD+ ratio, which might translate into increased levels of hydrogen sulfide-via enhanced activity of cystathionine ß-synthase-that would fuel reductive stress through inhibition of mitochondrial complex I. Reductive stress may be either a potential weapon against cancer priming tumor cells to apoptosis or a cancer's ally promoting tumor cell proliferation and making tumor cells resistant to reactive oxygen species-inducing drugs. In non-cancer pathological states reductive stress is definitely harmful paradoxically leading to reactive oxygen species overproduction via excess NADPH oxidase 4 activity. In face of the documented occurrence of reductive stress in several heart diseases, there is much less information about the occurrence and effects of reductive stress in skeletal muscle tissue. In the present review we describe relevant results emerged from studies of reductive stress in the heart and review skeletal muscle conditions in which reductive stress has been experimentally documented and those in which reductive stress might have an as yet unrecognized pathophysiological role. Establishing whether reductive stress has a (patho)physiological role in skeletal muscle will hopefully contribute to answer the question whether antioxidant supplementation to the general population, athletes, and a large cohort of patients (e.g. heart, sarcopenic, dystrophic, myopathic, cancer, and bronco-pulmonary patients) is harmless or detrimental.


Assuntos
Células Musculares/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Autofagia , Glutationa/metabolismo , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/metabolismo
3.
Biochim Biophys Acta Mol Cell Res ; 1865(5): 721-733, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29499228

RESUMO

Nrf2 and its endogenous inhibitor, Keap1, function as a ubiquitous, evolutionarily conserved intracellular defense mechanism to counteract oxidative stress. Sequestered by cytoplasmic Keap1 and targeted to proteasomal degradation in basal conditions, in case of oxidative stress Nrf2 detaches from Keap1 and translocates to the nucleus, where it heterodimerizes with one of the small Maf proteins. The heterodimers recognize the AREs, that are enhancer sequences present in the regulatory regions of Nrf2 target genes, essential for the recruitment of key factors for transcription. In the present review we briefly introduce the Nrf2-Keap1 system and describe Nrf2 functions, illustrate the Nrf2-NF-κB cross-talk, and highlight the effects of the Nrf2-Keap1 system in the physiology and pathophysiology of striated muscle tissue taking into account its role(s) in oxidative stress and reductive stress.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Núcleo Celular/genética , Humanos , Fatores de Transcrição Maf/genética , NF-kappa B/genética , Oxirredução , Transdução de Sinais
4.
Cell Mol Life Sci ; 74(15): 2749-2760, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28417162

RESUMO

S100A6 protein belongs to the A group of the S100 protein family of Ca2+-binding proteins. It is expressed in a limited number of cell types in adult normal tissues and in several tumor cell types. As an intracellular protein, S100A6 has been implicated in the regulation of several cellular functions, such as proliferation, apoptosis, the cytoskeleton dynamics, and the cellular response to different stress factors. S100A6 can be secreted/released by certain cell types which points to extracellular effects of the protein. RAGE (receptor for advanced glycation endproducts) and integrin ß1 transduce some extracellular S100A6's effects. Dosage of serum S100A6 might aid in diagnosis in oncology.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Neoplasias/metabolismo , Proteínas S100/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular/sangue , Proteínas de Ciclo Celular/genética , Movimento Celular , Citoesqueleto/genética , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Humanos , Integrina beta1/metabolismo , Neoplasias/sangue , Neoplasias/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteína A6 Ligante de Cálcio S100 , Proteínas S100/sangue , Proteínas S100/genética , Transdução de Sinais , Células-Tronco/metabolismo
5.
Int J Mol Sci ; 19(1)2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361745

RESUMO

Depending on the species, microglial cells represent 5-20% of glial cells in the adult brain. As the innate immune effector of the brain, microglia are involved in several functions: regulation of inflammation, synaptic connectivity, programmed cell death, wiring and circuitry formation, phagocytosis of cell debris, and synaptic pruning and sculpting of postnatal neural circuits. Moreover, microglia contribute to some neurodevelopmental disorders such as Nasu-Hakola disease (NHD), and to aged-associated neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and others. There is evidence that human and rodent microglia may become senescent. This event determines alterations in the microglia activation status, associated with a chronic inflammation phenotype and with the loss of neuroprotective functions that lead to a greater susceptibility to the neurodegenerative diseases of aging. In the central nervous system (CNS), Triggering Receptor Expressed on Myeloid Cells 2-DNAX activation protein 12 (TREM2-DAP12) is a signaling complex expressed exclusively in microglia. As a microglial surface receptor, TREM2 interacts with DAP12 to initiate signal transduction pathways that promote microglial cell activation, phagocytosis, and microglial cell survival. Defective TREM2-DAP12 functions play a central role in the pathogenesis of several diseases. The CX3CL1 (fractalkine)-CX3CR1 signaling represents the most important communication channel between neurons and microglia. The expression of CX3CL1 in neurons and of its receptor CX3CR1 in microglia determines a specific interaction, playing fundamental roles in the regulation of the maturation and function of these cells. Here, we review the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes in aged microglia and the involvement of these pathways in physiological CNS aging and in age-associated neurodegenerative diseases.


Assuntos
Envelhecimento/fisiologia , Microglia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Receptor 1 de Quimiocina CX3C/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Quimiocina CX3CL1/metabolismo , Regulação da Expressão Gênica , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Receptores Imunológicos/metabolismo , Transdução de Sinais
6.
Biochim Biophys Acta ; 1833(1): 101-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23103427

RESUMO

RAGE (receptor for advanced glycation end-products) is a multiligand receptor of the immunoglobulin superfamily involved in inflammation, diabetes, atherosclerosis, nephropathy, neurodegeneration, and cancer. Advanced glycation end-products, high mobility group box-1 (amphoterin), ß-amyloid fibrils, certain S100 proteins, and DNA and RNA are RAGE ligands. Upon RAGE ligation, adaptor proteins (i.e., diaphanous-1, TIRAP, MyD88 and/or other as yet unidentified adaptors) associate with RAGE cytoplasmic domain resulting in signaling. However, RAGE activation may not be restricted to pathological statuses, the receptor being involved in tissue homeostasis and regeneration/repair upon acute injury, and in resolution of inflammation. RAGE effects are strongly dependent on the cell type and the context, which may condition therapeutic strategies aimed at reducing RAGE signaling.


Assuntos
Homeostase/genética , Receptores Imunológicos/fisiologia , Regeneração/genética , Cicatrização/genética , Animais , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Produtos Finais de Glicação Avançada/fisiologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Modelos Biológicos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
7.
J Biol Chem ; 286(9): 7214-26, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21209080

RESUMO

The Ca(2+)-binding protein of the EF-hand type, S100B, is abundantly expressed in and secreted by astrocytes, and release of S100B from damaged astrocytes occurs during the course of acute and chronic brain disorders. Thus, the concept has emerged that S100B might act an unconventional cytokine or a damage-associated molecular pattern protein playing a role in the pathophysiology of neurodegenerative disorders and inflammatory brain diseases. S100B proinflammatory effects require relatively high concentrations of the protein, whereas at physiological concentrations S100B exerts trophic effects on neurons. Most if not all of the extracellular (trophic and toxic) effects of S100B in the brain are mediated by the engagement of RAGE (receptor for advanced glycation end products). We show here that high S100B stimulates murine microglia migration in Boyden chambers via RAGE-dependent activation of Src kinase, Ras, PI3K, MEK/ERK1/2, RhoA/ROCK, Rac1/JNK/AP-1, Rac1/NF-κB, and, to a lesser extent, p38 MAPK. Recruitment of the adaptor protein, diaphanous-1, a member of the formin protein family, is also required for S100B/RAGE-induced migration of microglia. The S100B/RAGE-dependent activation of diaphanous-1/Rac1/JNK/AP-1, Ras/Rac1/NF-κB and Src/Ras/PI3K/RhoA/diaphanous-1 results in the up-regulation of expression of the chemokines, CCL3, CCL5, and CXCL12, whose release and activity are required for S100B to stimulate microglia migration. Lastly, RAGE engagement by S100B in microglia results in up-regulation of the chemokine receptors, CCR1 and CCR5. These results suggests that S100B might participate in the pathophysiology of brain inflammatory disorders via RAGE-dependent regulation of several inflammation-related events including activation and migration of microglia.


Assuntos
Movimento Celular/imunologia , Quimiocinas/metabolismo , Microglia , Fatores de Crescimento Neural/metabolismo , Receptores Imunológicos/metabolismo , Proteínas S100/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Bovinos , Linhagem Celular , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocina CCL3/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CCL5/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Quimiocina CXCL12/metabolismo , Quimiocinas/genética , Quimiocinas/imunologia , Citoesqueleto/metabolismo , Encefalite/imunologia , Encefalite/metabolismo , Forminas , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/imunologia , Microglia/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/imunologia , Ratos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/genética , Proteínas S100/imunologia , Regulação para Cima/imunologia
8.
Biochim Biophys Acta ; 1813(5): 1092-104, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21130124

RESUMO

S100B protein activates IKKß/NF-κB within myoblasts, thereby inhibiting the expression of MyoD and the MyoD-downstream effectors, myogenin and p21(WAF1), and myoblast differentiation. Herein we show that myoblasts downregulate S100B expression once transferred from proliferation medium to differentiation medium via a p38 MAPK-driven transcriptional mechanism as well as a post-translational, proteasome-dependent mechanism, and that myoblasts that have not been committed to differentiation resume expressing S100B once transferred back to proliferation medium. Likewise, myoblasts downregulate S100B expression once transferred to quiescence medium, and interference with S100B downregulation as obtained by stable overexpression of the protein results in reduced acquisition of quiescence and a faster proliferation upon transfer of the cells from quiescence medium to proliferation medium, compared to controls. These latter effects are dependent on S100B-induced activation of JNK. Moreover, S100B reduces myoblast apoptosis in an MEK-ERK1/2, Akt, JNK, and NF-κB-dependent manner. However, myogenin(+) myoblasts (i.e., myocytes) and myotubes abundantly express S100B likely induced by myogenin. Our results suggest that (1) a timely repression of S100B expression is required for efficient myogenic differentiation; (2) S100B plays an important role in the expansion of the activated (i.e., proliferating) myoblast population; (3) under conditions associated with enhanced expression of S100B, the transition from proliferation to quiescence and from quiescence to proliferation might be altered; and (4) S100B exerts different regulatory effects in myoblasts and myocytes/myotubes/myofibers. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Assuntos
Apoptose , Diferenciação Celular , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas S100/metabolismo , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/farmacologia , Citoproteção/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peróxido de Hidrogênio/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Mioblastos/efeitos dos fármacos , Mioblastos/enzimologia , Miogenina/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100
9.
Biochim Biophys Acta ; 1793(6): 1008-22, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19110011

RESUMO

The Ca2+-binding protein of the EF-hand type, S100B, exerts both intracellular and extracellular functions. Recent studies have provided more detailed information concerning the mechanism(s) of action of S100B as an intracellular regulator and an extracellular signal. Indeed, intracellular S100B acts as a stimulator of cell proliferation and migration and an inhibitor of apoptosis and differentiation, which might have important implications during brain, cartilage and skeletal muscle development and repair, activation of astrocytes in the course of brain damage and neurodegenerative processes, and of cardiomyocyte remodeling after infarction, as well as in melanomagenesis and gliomagenesis. As an extracellular factor, S100B engages RAGE (receptor for advanced glycation end products) in a variety of cell types with different outcomes (i.e. beneficial or detrimental, pro-proliferative or pro-differentiative) depending on the concentration attained by the protein, the cell type and the microenvironment. Yet, RAGE might not be the sole S100B receptor, and S100B's ability to engage RAGE might be regulated by its interaction with other extracellular factors. Future studies using S100B transgenic and S100B null mice might shed more light on the functional role(s) of the protein.


Assuntos
Comunicação Celular/fisiologia , Fatores de Crescimento Neural/metabolismo , Proteínas S100/metabolismo , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , Diferenciação Celular , Proliferação de Células , Citoesqueleto/metabolismo , Humanos , Fatores de Crescimento Neural/genética , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/genética
10.
J Cell Physiol ; 223(1): 270-82, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20069545

RESUMO

S100B, a Ca(2+)-binding protein of the EF-hand type, is expressed in myoblasts, the precursors of skeletal myofibers, and muscle satellite cells (this work). S100B has been shown to participate in the regulation of several intracellular processes including cell cycle progression and differentiation. We investigated regulatory activities of S100B within myoblasts by stable overexpression of S100B and by inhibition of S100B expression. Overexpression of S100B in myoblast cell lines and primary myoblasts resulted in inhibition of myogenic differentiation, evidenced by lack of expression of myogenin and myosin heavy chain (MyHC) and absence of myotube formation. S100B-overexpressing myoblasts showed reduced MyoD expression levels and unchanged Myf5 expression levels, compared with control myoblasts, and transient transfection of S100B-overexpressing myoblasts with MyoD, but not Myf5, restored differentiation and fusion in part. The transcriptional activity of NF-kappaB, a negative regulator of MyoD expression, was enhanced in S100B-overexpressing myoblasts, and blocking NF-kappaB activity resulted in reversal of S100B's inhibitory effects. Yin Yang1, a transcriptional repressor that is induced by NF-kappaB (p65) and mediates NF-kappaB inhibitory effects on several myofibrillary genes, also was upregulated in S100B-overexpressing myoblasts. Conversely, silencing S100B expression in myoblast cell lines by RNA interference resulted in reduced NF-kappaB activity and enhanced MyoD, myogenin and MyHC expression and myotube formation. Thus, intracellular S100B might modulate myoblast differentiation by interfering with MyoD expression in an NF-kappaB-dependent manner.


Assuntos
Diferenciação Celular , Desenvolvimento Muscular , Proteína MyoD/metabolismo , Mioblastos/metabolismo , NF-kappa B/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas S100/metabolismo , Animais , Bovinos , Linhagem Celular , Quinase I-kappa B/metabolismo , Camundongos , Fator Regulador Miogênico 5/metabolismo , Miogenina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fatores de Crescimento Neural/genética , Interferência de RNA , Ratos , Proteínas Recombinantes/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/genética , Fatores de Tempo , Transfecção , Fator de Transcrição YY1/metabolismo
11.
Int J Dev Neurosci ; 77: 26-38, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31026497

RESUMO

The presence of immune cells in the central nervous system has long been the subject of research to find out their role. For a long time it was believed that the CNS was a privileged area from an immunological point of view, due to the presence of the blood-brain barrier (BBB), as circulating immune cells were unable to penetrate the brain parenchyma, at least until the integrity of the BBB was preserved. For this reason the study of the CNS immune system has focused on the functions of microglia, the immunocompetent resident element of the brain parenchyma that retain the ability to divide and self-renew during lifespan without any significant contribution from circulating blood cells. More recently, the presence of lymphatic vessels in the dural sinuses has been demonstrated with accompanying lymphocytes, monocytes and other immune cells. Moreover, meningeal macrophages, that is macrophages along the blood vessels and in the choroid plexus (CP), are also present. These non-parenchymal immune cells, together with microglia, can affect multiple CNS functions. Here, we discuss the functional role of parenchymal and non-parenchymal immune cells and their contribution to the regulation of neurogenesis.


Assuntos
Encéfalo/fisiologia , Macrófagos/fisiologia , Mastócitos/fisiologia , Microglia/fisiologia , Neurogênese/fisiologia , Animais , Encéfalo/citologia , Encéfalo/imunologia , Humanos
12.
J Leukoc Biol ; 81(1): 108-18, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17023559

RESUMO

Besides exerting regulatory roles within astrocytes, the Ca2+-modulated protein of the EF-hand type S100B is released into the brain extracellular space, thereby affecting astrocytes, neurons, and microglia. However, extracellular effects of S100B vary, depending on the concentration attained and the protein being trophic to neurons up to nanomolar concentrations and causing neuronal apoptosis at micromolar concentrations. Effects of S100B on neurons are transduced by receptor for advanced glycation end products (RAGE). At high concentrations, S100B also up-regulates inducible NO synthase in and stimulates NO release by microglia by synergizing with bacterial endotoxin and IFN-gamma, thereby participating in microglia activation. We show here that S100B up-regulates cyclo-oxygenase-2 expression in microglia in a RAGE-dependent manner in the absence of cofactors through independent stimulation of a Cdc42-Rac1-JNK pathway and a Ras-Rac1-NF-kappaB pathway. Thus, S100B can be viewed as an astrocytic endokine, which might participate in the inflammatory response in the course of brain insults, once liberated into the brain extracellular space.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Regulação da Expressão Gênica , Microglia/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptores Imunológicos/metabolismo , Proteínas S100/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Produtos Finais de Glicação Avançada , Humanos , MAP Quinase Quinase 4/metabolismo , Camundongos , Modelos Biológicos , NF-kappa B/metabolismo , Fatores de Crescimento Neural/farmacologia , Receptor para Produtos Finais de Glicação Avançada , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/farmacologia , Transdução de Sinais , Transfecção , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo
13.
Dis Markers ; 2018: 9230479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662577

RESUMO

The mechanistic target of rapamycin (mTOR) drives several physiologic and pathologic cellular processes and is frequently deregulated in different types of tumors, including glioblastoma (GBM). Despite recent advancements in understanding the molecular mechanisms involved in GBM biology, the survival rates of this tumor are still disappointing, primarily due to the lack of efficacious treatments. The phosphatase and tensin homolog (PTEN)/phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mTOR pathway has emerged as a crucial player in GBM development and progression. However, to date, all the attempts to target this pathway with PI3K, AKT, or mTORC1 inhibitors failed to improve the outcome of patients with GBM. Despite these discouraging results, recent evidence pointed out that the blockade of mTORC2 might provide a useful therapeutic strategy for GBM, with the potential to overcome the limitations that mTORC1 inhibitors have shown so far. In this review, we analyzed the rationale of targeting mTOR in GBM and the available preclinical and clinical evidence supporting the choice of this therapeutic approach, highlighting the different roles of mTORC1 and mTORC2 in GBM biology.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Medicina Baseada em Evidências , Glioblastoma/tratamento farmacológico , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos
14.
J Cachexia Sarcopenia Muscle ; 9(7): 1255-1268, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30499235

RESUMO

Primary sarcopenia is a condition of reduced skeletal muscle mass and strength, reduced agility, and increased fatigability and risk of bone fractures characteristic of aged, otherwise healthy people. The pathogenesis of primary sarcopenia is not completely understood. Herein, we review the essentials of the cellular and molecular mechanisms of skeletal mass maintenance; the alterations of myofiber metabolism and deranged properties of muscle satellite cells (the adult stem cells of skeletal muscles) that underpin the pathophysiology of primary sarcopenia; the role of the Ca2+ -sensor protein, S100B, as an intracellular factor and an extracellular signal regulating cell functions; and the functional role of S100B in muscle tissue. Lastly, building on recent results pointing to S100B as to a molecular determinant of myoblast-brown adipocyte transition, we propose S100B as a transducer of the deleterious effects of accumulation of reactive oxygen species in myoblasts and, potentially, myofibers concurring to the pathophysiology of sarcopenia.


Assuntos
Músculo Esquelético/metabolismo , Sarcopenia/etiologia , Sarcopenia/metabolismo , Biomarcadores , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Sarcopenia/patologia , Células Satélites de Músculo Esquelético/metabolismo
15.
Front Cell Neurosci ; 12: 99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692710

RESUMO

Glioblastoma multiforme (GBM) is the most malignant brain tumor and is associated with poor prognosis due to its thorny localization, lack of efficacious therapies and complex biology. Among the numerous pathways driving GBM biology studied so far, PTEN/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) signaling plays a pivotal role, as it controls cell survival, proliferation and metabolism and is involved in stem cell maintenance. In front of recent and numerous evidences highlighting mTOR upregulation in GBM, all the strategies developed to inhibit this pathway have been substantially unsuccessful. Our study focused on mTOR complex 2 (mTORC2) to understand its involvement in GBM cell growth, proliferation, migration and invasiveness. We utilized an in vitro model, characterized by various genetic alterations (i.e., GL15, U257, U87MG and U118MG cell lines) in order to achieve the clonal heterogeneity observed in vivo. Additionally, being the U87MG cell line endowed with glioblastoma stem cells (GSCs), we also investigated the role of the PTEN/PI3K/AKT/mTOR pathway in this specific cell population, which is responsible for GBM relapse. We provide further insights that explain the reasons for the failure of numerous clinical trials conducted to date targeting PI3K or mTOR complex 1 (mTORC1) with rapamycin and its analogs. Additionally, we show that mTORC2 might represent a potential clinically valuable target for GBM treatment, as proliferation, migration and GSC maintenance appear to be mTORC2-dependent. In this context, we demonstrate that the novel ATP-competitive mTOR inhibitor PP242 effectively targets both mTORC1 and mTORC2 activation and counteracts cell proliferation via the induction of high autophagy levels, besides reducing cell migration, invasiveness and stemness properties.

16.
Mol Cell Biol ; 24(11): 4880-94, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15143181

RESUMO

The receptor for advanced glycation end products (RAGE), a multiligand receptor of the immunoglobulin superfamily, has been implicated in the inflammatory response, diabetic angiopathy and neuropathy, neurodegeneration, cell migration, tumor growth, neuroprotection, and neuronal differentiation. We show here that (i) RAGE is expressed in skeletal muscle tissue and its expression is developmentally regulated and (ii) RAGE engagement by amphoterin (HMGB1), a RAGE ligand, in rat L6 myoblasts results in stimulation of myogenic differentiation via activation of p38 mitogen-activated protein kinase (MAPK), up-regulation of myogenin and myosin heavy chain expression, and induction of muscle creatine kinase. No such effects were detected in myoblasts transfected with a RAGE mutant lacking the transducing domain or myoblasts transfected with a constitutively inactive form of the p38 MAPK upstream kinase, MAPK kinase 6, Cdc42, or Rac-1. Moreover, amphoterin counteracted the antimyogenic activity of the Ca(2+)-modulated protein S100B, which was reported to inhibit myogenic differentiation via inactivation of p38 MAPK, and basic fibroblast growth factor (bFGF), a known inhibitor of myogenic differentiation, in a manner that was inversely related to the S100B or bFGF concentration and directly related to the extent of RAGE expression. These data suggest that RAGE and amphoterin might play an important role in myogenesis, accelerating myogenic differentiation via Cdc42-Rac-1-MAPK kinase 6-p38 MAPK.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteína HMGB1/metabolismo , Desenvolvimento Muscular/fisiologia , Fatores de Crescimento Neural/metabolismo , Receptores Imunológicos/metabolismo , Proteínas S100/metabolismo , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , MAP Quinase Quinase 6 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Esquelético/metabolismo , Ratos , Receptor para Produtos Finais de Glicação Avançada , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas rac1 de Ligação ao GTP/metabolismo
17.
Front Mol Neurosci ; 10: 191, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674485

RESUMO

In vertebrates, during an early wave of hematopoiesis in the yolk sac between embryonic day E7.0 and E9.0, cells of mesodermal leaflet addressed to macrophage lineage enter in developing central nervous system (CNS) and originate the developing native microglial cells. Depending on the species, microglial cells represent 5-20% of glial cells resident in adult brain. Here, we briefly discuss some canonical functions of the microglia, i.e., cytokine secretion and functional transition from M1 to M2 phenotype. In addition, we review studies on the non-canonical functions of microglia such as regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. In this latter context the contribution of microglia to some neurodevelopmental disorders is now well established. Nasu-Hakola (NHD) disease is considered a primary microgliopathy with alterations of the DNAX activation protein 12 (DAP12)-Triggering receptor expressed on myeloid cells 2 (TREM-2) signaling and removal of macromolecules and apoptotic cells followed by secondary microglia activation. In Rett syndrome Mecp2-/- microglia shows a substantial impairment of phagocytic ability, although the role of microglia is not yet clear. In a mouse model of Tourette syndrome (TS), microglia abnormalities have also been described, and deficient microglia-mediated neuroprotection is obvious. Here we review the role of microglial cells in neurodevelopmental disorders without inflammation and on the complex role of microglia in developing CNS.

18.
Front Biosci (Landmark Ed) ; 22(2): 268-309, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27814616

RESUMO

Glioblastoma (GBM) is the most malignant and aggressive among primary brain tumors, characterized by very low life expectancy. In vivo, glioma and glioblastoma in particular contain large numbers of immune cells (myeloid cells) such as microglia and tumour-infiltrating macrophages (or glioma associated macrophages). These glioma-infiltrating myeloid cells comprise up to 30% of total tumor mass and have been suggested to play several roles in glioma progression including proliferation, survival, motility and immunosuppression. Although tumor microglia and macrophages can acquire proinflammatory (M1) phenotype being capable of releasing proinflammatory cytokines, phagocytosing and presenting antigens, their effector immune function in gliomas appears to be suppressed by the acquisition of an anti-inflammatory (M2) phenotype. In the present work we review the microglia-glioma interactions to highlight the close relationship between the two cell types and the factors that can influence their properties (chemokines, cytokines, S100B protein). A future therapeutic possibility might be to simultaneously targeting, for example with nanomedicine, glioma cells and microglia to push the microglia towards an antitumor phenotype (M1) and/or prevent glioma cells from "conditioning" by microglia.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Microglia/patologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatologia , Comunicação Celular , Glioma/genética , Glioma/fisiopatologia , Humanos , Tolerância Imunológica , Microglia/fisiologia , Células Supressoras Mieloides/patologia , Células Supressoras Mieloides/fisiologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/fisiologia , Fenótipo , Microambiente Tumoral
19.
Sci Rep ; 7(1): 12537, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970581

RESUMO

Regeneration of injured skeletal muscles relies on a tightly controlled chain of cellular and molecular events. We show that appropriate levels of S100B protein are required for timely muscle regeneration after acute injury. S100B released from damaged myofibers and infiltrating macrophages expands the myoblast population, attracts macrophages and promotes their polarization into M2 (pro-regenerative) phenotype, and modulates collagen deposition, by interacting with RAGE (receptor for advanced glycation end-products) or FGFR1 (fibroblast growth factor receptor 1) depending on the muscle repair phase and local conditions. However, persistence of high S100B levels compromises the regeneration process prolonging myoblast proliferation and macrophage infiltration, delaying M1/M2 macrophage transition, and promoting deposition of fibrotic tissue via RAGE engagement. Interestingly, S100B is released in high abundance from degenerating muscles of mdx mice, an animal model of Duchenne muscular dystrophy (DMD), and blocking S100B ameliorates histopathology. Thus, levels of S100B differentially affect skeletal muscle repair upon acute injury and in the context of muscular dystrophy, and S100B might be regarded as a potential molecular target in DMD.


Assuntos
Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofia Muscular de Duchenne/genética , Regeneração/genética , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Animais , Modelos Animais de Doenças , Humanos , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos mdx , Força Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Distrofias Musculares/metabolismo , Distrofias Musculares/fisiopatologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
20.
Cell Death Differ ; 24(12): 2077-2088, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28885620

RESUMO

Muscles of sarcopenic people show hypotrophic myofibers and infiltration with adipose and, at later stages, fibrotic tissue. The origin of infiltrating adipocytes resides in fibro-adipogenic precursors and nonmyogenic mesenchymal progenitor cells, and in satellite cells, the adult stem cells of skeletal muscles. Myoblasts and brown adipocytes share a common Myf5+ progenitor cell: the cell fate depends on levels of bone morphogenetic protein 7 (BMP-7), a TGF-ß family member. S100B, a Ca2+-binding protein of the EF-hand type, is expressed at relatively high levels in myoblasts from sarcopenic humans and exerts anti-myogenic effects via NF-κB-dependent inhibition of MyoD, a myogenic transcription factor acting upstream of the essential myogenic factor, myogenin. Adipogenesis requires high levels of ROS, and myoblasts of sarcopenic subjects show elevated ROS levels. Here we show that: (1) ROS overproduction in myoblasts results in upregulation of S100B levels via NF-κB activation; and (2) ROS/NF-κB-induced accumulation of S100B causes myoblast transition into brown adipocytes. S100B activates an NF-κB/Ying Yang 1 axis that negatively regulates the promyogenic and anti-adipogenic miR-133 with resultant accumulation of the brown adipogenic transcription regulator, PRDM-16. S100B also upregulates BMP-7 via NF-κB/Ying Yang 1 with resultant BMP-7 autocrine activity. Interestingly, myoblasts from sarcopenic humans show features of brown adipocytes. We also show that S100B levels and NF-κB activity are elevated in brown adipocytes obtained by culturing myoblasts in adipocyte differentiation medium and that S100B knockdown or NF-κB inhibition in myoblast-derived brown adipocytes reconverts them into fusion-competent myoblasts. At last, interstitial cells and, unexpectedly, a subpopulation of myofibers in muscles of geriatric but not young mice co-express S100B and the brown adipocyte marker, uncoupling protein-1. These results suggest that S100B is an important intracellular molecular signal regulating Myf5+ progenitor cell differentiation into fusion-competent myoblasts or brown adipocytes depending on its levels.


Assuntos
Adipócitos Marrons/metabolismo , MicroRNAs/metabolismo , Mioblastos/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/fisiologia , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Adipócitos Marrons/citologia , Animais , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Humanos , Masculino , Camundongos , MicroRNAs/genética , Mioblastos/citologia , Espécies Reativas de Oxigênio/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Transfecção , Fator de Transcrição YY1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA