Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Protein Expr Purif ; 211: 106339, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37467825

RESUMO

Human interferon alpha 2a (IFNα2a) is a secreted glycoprotein that exerts a wide spectrum of biological effects, such as triggering of antiviral, antitumor and immunosuppressive responses. IFNα2a is used as pharmaceutical polypeptide in chronic hepatitis C virus (HCV) infection, chronic myelogenous leukemia, advanced renal cell carcinoma, and metastatic malignant melanoma. So far, the pharmaceutical polypeptide of this cytokine is produced in prokaryotic expression systems (E. coli). Here we report the expression and purification of recombinant human IFNα2a in the methylotrophic yeast Pichia pastoris. The cDNA encoding for human IFNα2a, modified to bear the P. pastoris codon bias, was cloned into the pPinkα-HC vector in order to be expressed as a secreted protein upon induction. Proper expression and secretion of recombinant human IFNα2a (approximately 19 kDa) was confirmed by PCR-sequencing, SDS-PAGE and Western blot analysis following methanol-induced expression in a number of individual transformed strains. Purification of the recombinant protein was performed by affinity chromatography, achieving a robust yield of purified active form. The purified recombinant protein showed an impressive stability to thermal denaturation as observed by Differential Scanning Fluorimetry. The biological activity of the P. pastoris-produced IFNα2a was confirmed in A549 and HT29 cells by monitoring transcriptional up-regulation of a panel of known interferon-stimulated genes (ISGs). Our results document that the P. pastoris expression system is a suitable system for producing biologically functional IFNα2a in a secreted form.


Assuntos
Hepatite C Crônica , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Interferon-alfa/genética , Interferon-alfa/farmacologia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
2.
RNA ; 18(5): 1091-100, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22417692

RESUMO

MicroRNA-mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3' UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3' UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3' UTR-mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs.


Assuntos
Genes Reporter , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Proteínas Argonautas/metabolismo , Sequência de Bases , Linhagem Celular , Expressão Gênica , Ordem dos Genes , Vetores Genéticos , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos , Dados de Sequência Molecular , Poli A/química , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Retroviridae/genética
3.
Front Oncol ; 14: 1227151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756663

RESUMO

Stress-induced promoter-associated and antisense lncRNAs (si-paancRNAs) originate from a reservoir of oxidative stress (OS)-specific promoters via RNAPII pausing-mediated divergent antisense transcription. Several studies have shown that the KDM7A divergent transcript gene (KDM7A-DT), which encodes a si-paancRNA, is overexpressed in some cancer types. However, the mechanisms of this overexpression and its corresponding roles in oncogenesis and cancer progression are poorly understood. We found that KDM7A-DT expression is correlated with highly aggressive cancer types and specific inherently determined subtypes (such as ductal invasive breast carcinoma (BRCA) basal subtype). Its regulation is determined by missense TP53 mutations in a subtype-specific context. KDM7A-DT transcribes several intermediate-sized ncRNAs and a full-length transcript, exhibiting distinct expression and localization patterns. Overexpression of KDM7A-DT upregulates TP53 protein expression and H2AX phosphorylation in nonmalignant fibroblasts, while in semi-transformed fibroblasts, OS superinduces KDM7A-DT expression in a TP53-dependent manner. KDM7A-DT knockdown and gene expression profiling in TP53-missense mutated luminal A BRCA variant, where it is abundantly expressed, indicate its significant role in cancer pathways. Endogenous over-expression of KDM7A-DT inhibits DNA damage response/repair (DDR/R) via the TP53BP1-mediated pathway, reducing apoptosis and promoting G2/M checkpoint arrest. Higher KDM7A-DT expression in BRCA is associated with KDM7A-DT locus gain/amplification, higher histologic grade, aneuploidy, hypoxia, immune modulation scores, and activation of the c-myc pathway. Higher KDM7A-DT expression is associated with relatively poor survival outcomes in patients with luminal A or Basal subtypes. In contrast, it is associated with favorable outcomes in patients with HER2+ER- or luminal B subtypes. KDM7A-DT levels are coregulated with critical transcripts and proteins aberrantly expressed in BRCA, including those involved in DNA repair via non-homologous end joining and epithelial-to-mesenchymal transition pathway. In summary, KDM7A-DT and its si-lncRNA exhibit several intrinsic biological and clinical characteristics that suggest important roles in invasive BRCA and its subtypes. KDM7A-DT-defined mRNA and protein subnetworks offer resources for identifying clinically relevant RNA-based signatures and prospective targets for therapeutic intervention.

4.
EMBnet J ; 292024.
Artigo em Inglês | MEDLINE | ID: mdl-38845752

RESUMO

Breast milk, often referred to as "liquid gold," is a complex biofluid that provides essential nutrients, immune factors, and developmental cues for newborns. Recent advancements in the field of exosome research have shed light on the critical role of exosomes in breast milk. Exosomes are nanosized vesicles that carry bioactive molecules, including proteins, lipids, nucleic acids, and miRNAs. These tiny messengers play a vital role in intercellular communication and are now being recognized as key players in infant health and development. This paper explores the emerging field of milk exosomics, emphasizing the potential of exosome fingerprinting to uncover valuable insights into the composition and function of breast milk. By deciphering the exosomal cargo, we can gain a deeper understanding of how breast milk influences neonatal health and may even pave the way for personalized nutrition strategies.

5.
Annu Rev Biomed Data Sci ; 6: 275-298, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37159873

RESUMO

MicroRNAs (miRNAs) are short noncoding RNAs that can regulate all steps of gene expression (induction, transcription, and translation). Several virus families, primarily double-stranded DNA viruses, encode small RNAs (sRNAs), including miRNAs. These virus-derived miRNAs (v-miRNAs) help the virus evade the host's innate and adaptive immune system and maintain an environment of chronic latent infection. In this review, the functions of the sRNA-mediated virus-host interactions are highlighted, delineating their implication in chronic stress, inflammation, immunopathology, and disease. We provide insights into the latest viral RNA-based research-in silico approaches for functional characterization of v-miRNAs and other RNA types. The latest research can assist toward the identification of therapeutic targets to combat viral infections.


Assuntos
MicroRNAs , Viroses , Vírus , Humanos , MicroRNAs/genética , Vírus/genética , RNA Viral/genética , Viroses/genética
6.
J Fungi (Basel) ; 9(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37623613

RESUMO

Aspergillus mold is a ubiquitously found, airborne pathogen that can cause a variety of diseases from mild to life-threatening in severity. Limitations in diagnostic methods combined with anti-fungal resistance render Aspergillus a global emerging pathogen. In industry, Aspergilli produce toxins, such as aflatoxins, which can cause food spoilage and pose public health risk issues. Here, we report a multiplex qPCR method for the detection and identification of the five most common pathogenic Aspergillus species, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Aspergillus nidulans. Our approach exploits species-specific nucleotide polymorphisms within their ITS genomic regions. This novel assay combines multiplex single-color real time qPCR and melting curve analysis and provides a straight-forward, rapid, and cost-effective detection method that can identify five Aspergillus species simultaneously in a single reaction using only six unlabeled primers. Due to their unique fragment lengths, the resulting amplicons are directly linked to certain Aspergillus species like fingerprints, following either electrophoresis or melting curve analysis. Our method is characterized by high analytical sensitivity and specificity, so it may serve as a useful and inexpensive tool for Aspergillus diagnostic applications both in health care and the food industry.

7.
Proc Natl Acad Sci U S A ; 105(19): 7004-9, 2008 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-18458333

RESUMO

MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs that function as negative gene regulators. miRNA deregulation is involved in the initiation and progression of human cancer; however, the underlying mechanism and its contributions to genome-wide transcriptional changes in cancer are still largely unknown. We studied miRNA deregulation in human epithelial ovarian cancer by integrative genomic approach, including miRNA microarray (n = 106), array-based comparative genomic hybridization (n = 109), cDNA microarray (n = 76), and tissue array (n = 504). miRNA expression is markedly down-regulated in malignant transformation and tumor progression. Genomic copy number loss and epigenetic silencing, respectively, may account for the down-regulation of approximately 15% and at least approximately 36% of miRNAs in advanced ovarian tumors and miRNA down-regulation contributes to a genome-wide transcriptional deregulation. Last, eight miRNAs located in the chromosome 14 miRNA cluster (Dlk1-Gtl2 domain) were identified as potential tumor suppressor genes. Therefore, our results suggest that miRNAs may offer new biomarkers and therapeutic targets in epithelial ovarian cancer.


Assuntos
Epigênese Genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , MicroRNAs/genética , Neoplasias Ovarianas/genética , DNA de Neoplasias , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Estadiamento de Neoplasias , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease III/genética , Análise de Sobrevida
8.
Mol Med Rep ; 23(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179094

RESUMO

Studies on extracellular vesicles have increased in recent years. The multi­dimensional nature of their roles in cellular homeostasis, cell­to­cell and tissue­to­tissue communication at the level of the organism, as well as their actions on the holobiome (intra­/interspecies interaction), have garnered the interest of a large number of researchers. Exosomes are one of the most researched classes of extracellular vesicles because they are carriers of targeted protein and DNA/RNA loads. Their multi­functional cargo have been indicated to regulate a vast number of biological pathways in target cells. However, the mechanisms governing these interactions have not yet been fully determined. Endocrinology, by definition, focuses on homeostatic, and cell­to­cell and tissue­to­tissue communication mechanisms. Therefore exosomes should be included in this research topic. Exosomes have previously been associated with a number of endocrine disorders, including obesity, type 2 diabetes mellitus, disorders of the reproductive system and cancer. Furthermore, their biogenesis, composition and function have been associated with viruses, an entirely different domain of life. The profound roles of exosomes in homeostasis, stress and several pathological conditions, in conjunction with their selective and cell­specific composition/function, allude to their use as promising circulating clinical biomarkers of systemic stress and specific pathologic states, and as biocompatible vehicles of therapeutic cargo. The current review provides information on exosomes and discusses their endocrine implications.


Assuntos
Biomarcadores/sangue , Doenças do Sistema Endócrino/sangue , Exossomos/genética , Exossomos/metabolismo , Comunicação Celular , Microambiente Celular , Doenças do Sistema Endócrino/genética , Doenças do Sistema Endócrino/metabolismo , Homeostase , Humanos , Medicina de Precisão
9.
Int J Mol Med ; 48(6)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34651660

RESUMO

Breast milk is the ideal food for infants and undoubtedly has immediate and long­term benefits. Breast milk contains extracellular vesicles (EVs) i.e., exosomes secreted by maternal breast cells. Exosomes carry genetic material, such as long non­coding RNAs (lncRNAs), which possibly participate in cell­to­cell communications, as they are known to regulate critical gene pathways. The aim of the present study was to screen human breastmilk exosomes for their lncRNA cargo and to examine exosomal lncRNA levels associated with milk obtained from mothers that gave birth at term or prematurely (<37 weeks of gestation). Samples were collected at 3 weeks postpartum from 20 healthy, breastfeeding mothers; 10 mothers had given birth at full­term and 10 mothers preterm. Exosomal RNA was extracted from all samples and the expression of 88 distinct lncRNAs was determined using reverse transcription­quantitative PCR. A total of 13 lncRNAs were detected in ≥85% of the samples, while 31 were detected in ≥50% of the samples. Differential expression analysis of the lncRNAs between the two groups revealed ≥2­fold differences, with generally higher lncRNA concentrations found in the milk of the mothers that gave birth at term compared with those that gave birth preterm. Among these, the non­coding RNA activated at DNA damage (NORAD) was prominently detected in both groups, and its expression was significantly downregulated in the breast milk exosomes of mothers who delivered preterm. On the whole, the present study demonstrates that breast milk lncRNAs may be important factors of normal early human development. Collectively, the presence of lncRNAs in human breast milk may explain the consistent inability of researchers to fully 'humanize' animal milk.


Assuntos
Exossomos/genética , Leite Humano/citologia , RNA Longo não Codificante/genética , Adulto , Aleitamento Materno , Regulação para Baixo , Feminino , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Leite Humano/fisiologia , Mães
10.
Cancer Lett ; 266(1): 12-20, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18378391

RESUMO

The heterodimeric transcription factor HIF-1 (hypoxia-inducible factor 1) represents the key mediator of hypoxia response. HIF-1 controls numerous genes of pivotal importance for cellular metabolism, angiogenesis, cell cycle regulation and inhibition of apoptosis. HIF-1 overexpression and enhanced transcriptional activity are linked to tumour initiation and progression. Malfunction of the HIF-1 signalling network has been associated with breast, ovarian and prostate cancers. Elevated reactive oxygen species (ROS), also observed in such tumours, have been implicated in HIF-1 signalling. Deciphering the role of ROS in cancer onset and their involvement in signalling networks should prove invaluable for the design of novel anticancer therapeutics.


Assuntos
Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias/etiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Hipóxia Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/fisiologia , Modelos Biológicos , Neoplasias/metabolismo , Transdução de Sinais , Transcrição Gênica
11.
Clin Cancer Res ; 13(18 Pt 1): 5314-21, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17875760

RESUMO

PURPOSE: The phosphatidylinositol 3'-kinase (PI3K) family plays a key regulatory role in various cancer-associated signal transduction pathways. Here, we investigated the genomic alterations and gene expression of most known PI3K family members in human epithelial ovarian cancer. EXPERIMENTAL DESIGN: The DNA copy number of PI3K family genes was screened by a high-resolution array comparative genomic hybridization in 89 human ovarian cancer specimens. The mRNA expression level of PI3K genes was analyzed by microarray retrieval approach, and further validated by real-time reverse transcription-PCR. The expression of p55gamma protein in ovarian cancer was analyzed on tissue arrays. Small interfering RNA was used to study the function of PIK3R3 in ovarian cancer. RESULTS: In ovarian cancer, 6 of 12 PI3K genes exhibited significant DNA copy number gains (>20%), including PIK3CA (23.6%), PIK3CB (27.0%), PIK3CG (25.8%), PIK3R2 (29.2%), PIK3R3 (21.3%), and PIK3C2B (40.4%). Among those, only PIK3R3 had significantly up-regulated mRNA expression level in ovarian cancer compared with normal ovary. Up-regulated PIK3R3 mRNA expression was also observed in liver, prostate, and breast cancers. The PIK3R3 mRNA expression level was significantly higher in ovarian cancer cell lines (n = 18) than in human ovarian surface epithelial cells (n = 6, P = 0.002). Overexpression of p55gamma protein in ovarian cancer was confirmed by tissue array analysis. In addition, we found that knockdown of PIK3R3 expression by small interfering RNA significantly increased the apoptosis in cultured ovarian cancer cell lines. CONCLUSION: We propose that PIK3R3 may serve as a potential therapeutic target in human ovarian cancer.


Assuntos
Carcinoma/enzimologia , Neoplasias Ovarianas/enzimologia , Fosfatidilinositol 3-Quinases/genética , Carcinoma/tratamento farmacológico , Carcinoma/genética , Feminino , Dosagem de Genes , Genômica , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Fosfatidilinositol 3-Quinases/análise , Inibidores de Fosfoinositídeo-3 Quinase , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
12.
Cancer Res ; 66(9): 4627-35, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16651413

RESUMO

The protein kinase C (PKC) family plays a key regulatory role in a wide range of cellular functions as well as in various cancer-associated signal transduction pathways. Here, we investigated the genomic alteration and gene expression of most known PKC family members in human ovarian cancer. The DNA copy number of PKC family genes was screened by a high-resolution array-based comparative genomic hybridization in 89 human ovarian cancer specimens. Five PKC genes exhibited significant DNA copy number gains, including PKCiota (43.8%), PKCbeta1 (37.1%), PKCgamma (27.6%), PKCzeta (22.5%), and PKCtheta (21.3%). None of the PKC genes exhibited copy number loss. The mRNA expression level of PKC genes was analyzed by microarray retrieval approach. Two of the amplified PKC genes, PKCiota and PKCtheta, were significantly up-regulated in ovarian cancer compared with normal ovary. Increased PKCiota expression correlated with tumor stage or grade, and PKCiota overexpression was seen mostly in ovarian carcinoma but not in other solid tumors. The above results were further validated by real-time reverse transcription-PCR with 54 ovarian cancer specimens and 24 cell lines; overexpression of PKCiota protein was also confirmed by tissue array and Western blot. Interestingly, overexpressed PKCiota did not affect ovarian cancer cell proliferation or apoptosis in vitro. However, decreased PKCiota expression significantly reduced anchorage-independent growth of ovarian cancer cells, whereas overexpression of PKCiota contributed to murine ovarian surface epithelium transformation in cooperation with mutant Ras. We propose that PKCiota may serve as an oncogene and a biomarker of aggressive disease in human ovarian cancer.


Assuntos
Biomarcadores Tumorais/genética , Isoenzimas/genética , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Proteína Quinase C/genética , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Feminino , Dosagem de Genes , Humanos , Isoenzimas/biossíntese , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Proteína Quinase C/biossíntese , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transcrição Gênica , Transfecção , Regulação para Cima , Proteínas ras/genética
13.
Atherosclerosis ; 271: 237-244, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29395098

RESUMO

BACKGROUND AND AIMS: We aim to identify significant transcriptome alterations of vascular smooth muscle cells (VSMCs) in the aortic wall of myocardial infarction (MI) patients. Providing a robust transcriptomic signature, we aim to highlight the most likely aberrant pathway(s) in MI VSMCs. METHODS AND RESULTS: Laser-captured microdissection (LCM) was used to obtain VSMCs from aortic wall tissues harvested during coronary artery bypass surgery. Microarray gene analysis was applied to analyse VSMCs from 17 MI and 19 non-MI patients. Prediction Analysis of Microarray (PAM) identified 370 genes that significantly discriminated MI and non-MI samples and were enriched in genes responsible for muscle development, differentiation and phenotype regulation. Incorporation of gene ontology (GO) led to the identification of a 21-gene VSMCs-associated classifier that discriminated between MI and non-MI patients with 92% accuracy. The mass spectrometry-based iTRAQ analysis of the MI and non-MI samples revealed 94 proteins significantly differentiating these tissues. Ingenuity Pathway Analysis (IPA) of 370 genes revealed top pathways associated with hypoxia signaling in the cardiovascular system. Enrichment analysis of these proteins suggested an activation of the superoxide radical degradation pathway. An integrated transcriptome-proteome pathway analysis revealed that superoxide radical degradation pathway remained the most implicated pathway. The intersection of the top candidate molecules from the transcriptome and proteome highlighted superoxide dismutase (SOD1) overexpression. CONCLUSIONS: We provided a novel 21-gene VSMCs-associated MI classifier in reference to significant VSMCs transcriptome alterations that, in combination with proteomics data, suggests the activation of superoxide radical degradation pathway in VSMCs of MI patients.


Assuntos
Músculo Liso Vascular/química , Infarto do Miocárdio/genética , Miócitos de Músculo Liso/química , Transdução de Sinais/genética , Transcriptoma , Aorta/química , Estudos de Casos e Controles , Cromatografia Líquida , Perfilação da Expressão Gênica/métodos , Humanos , Infarto do Miocárdio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Proteômica/métodos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxidos/metabolismo , Espectrometria de Massas em Tandem
14.
Data Brief ; 17: 1112-1135, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29876469

RESUMO

This article contains further data and information from our published manuscript [1]. We aim to identify significant transcriptome alterations of vascular smooth muscle cells (VSMCs) in the aortic wall of myocardial infarction (MI) patients. Microarray gene analysis was applied to evaluate VSMCs of MI and non-MI patients. Prediction Analysis of Microarray (PAM) identified genes that significantly discriminated the two groups of samples. Incorporation of gene ontology (GO) identified a VSMCs-associated classifier that discriminated between the two groups of samples. Mass spectrometry-based iTRAQ analysis revealed proteins significantly differentiating these two groups of samples. Ingenuity Pathway Analysis (IPA) revealed top pathways associated with hypoxia signaling in cardiovascular system. Enrichment analysis of these proteins suggested an activated pathway, and an integrated transcriptome-proteome pathway analysis revealed that it is the most implicated pathway. The intersection of the top candidate molecules from the transcriptome and proteome highlighted overexpression.

15.
Biomed Res Int ; 2015: 712438, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26448945

RESUMO

Infiltration of cytotoxic T-lymphocytes in ovarian cancer is a favorable prognostic factor. Employing a differential expression approach, we have recently identified a number of genes associated with CD8+ T-cell infiltration in early stage ovarian tumors. In the present study, we validated by qPCR the expression of two genes encoding the transmembrane proteins GPC6 and TMEM132D in a cohort of early stage ovarian cancer patients. The expression of both genes correlated positively with the mRNA levels of CD8A, a marker of T-lymphocyte infiltration [Pearson coefficient: 0.427 (p = 0.0067) and 0.861 (p < 0.0001), resp.]. GPC6 and TMEM132D expression was also documented in a variety of ovarian cancer cell lines. Importantly, Kaplan-Meier survival analysis revealed that high mRNA levels of GPC6 and/or TMEM132D correlated significantly with increased overall survival of early stage ovarian cancer patients (p = 0.032). Thus, GPC6 and TMEM132D may serve as predictors of CD8+ T-lymphocyte infiltration and as favorable prognostic markers in early stage ovarian cancer with important consequences for diagnosis, prognosis, and tumor immunobattling.


Assuntos
Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos/patologia , Glipicanas/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Ativação Linfocitária , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Pennsylvania/epidemiologia , Prevalência , Fatores de Risco , Taxa de Sobrevida , Regulação para Cima
16.
Sci Rep ; 5: 9737, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26024509

RESUMO

Oxidative stress (OS) is caused by an imbalance between pro- and anti-oxidant reactions leading to accumulation of reactive oxygen species within cells. We here investigate the effect of OS on the transcriptome of human fibroblasts. OS causes a rapid and transient global induction of transcription characterized by pausing of RNA polymerase II (PolII) in both directions, at specific promoters, within 30 minutes of the OS response. In contrast to protein-coding genes, which are commonly down-regulated, this novel divergent, PolII pausing-phenomenon leads to the generation of thousands of long noncoding RNAs (lncRNAs) with promoter-associated antisense lncRNAs transcripts (si-paancRNAs) representing the major group of stress-induced transcripts. OS causes transient dynamics of si-lncRNAs in nucleus and cytosol, leading to their accumulation at polysomes, in contrast to mRNAs, which get depleted from polysomes. We propose that si-lncRNAs represent a novel component of the transcriptional stress that is known to determine the outcome of immediate-early and later cellular stress responses and we provide insights on the fate of those novel mature lncRNA transcripts by showing that their association with polysomal complexes is significantly increased in OS.


Assuntos
Genoma Humano , Estresse Oxidativo , RNA Mensageiro/genética , RNA não Traduzido/genética , Transcriptoma , Sítios de Ligação , Linhagem Celular , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Regiões Promotoras Genéticas , Biossíntese de Proteínas , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , RNA Antissenso/genética , RNA Longo não Codificante/classificação , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo
17.
Int J Biochem Cell Biol ; 53: 389-98, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24880093

RESUMO

T-lymphocyte infiltration in ovarian tumors has been linked to a favorable prognosis, hence, exploring the mechanism of T-cell recruitment in the tumor is warranted. We employed a differential expression analysis to identify genes over-expressed in early stage ovarian cancer samples that contained CD8 infiltrating T-lymphocytes. Among other genes, we discovered that TTF1, a regulator of ribosomal RNA gene expression, and SMARCE1, a factor associated with chromatin remodeling were overexpressed in first stage CD8+ ovarian tumors. TTF1 and SMARCE1 mRNA levels showed a strong correlation with the number of intra-tumoral CD8+ cells in ovarian tumors. Interestingly, forced overexpression of SMARCE1 in SKOV3 ovarian cancer cells resulted in secretion of IL8, MIP1b and RANTES chemokines in the supernatant and triggered chemotaxis of CD8+ lymphocytes in a cell culture assay. The potency of SMARCE1-mediated chemotaxis appeared comparable to that caused by the transfection of the CXCL9 gene, coding for a chemokine known to attract T-cells. Our analysis pinpoints TTF1 and SMARCE1 as genes potentially involved in cancer immunology. Since both TTF1 and SMARCE1 are involved in chromatin remodeling, our results imply an epigenetic regulatory mechanism for T-cell recruitment that invites deciphering.


Assuntos
Linfócitos T CD8-Positivos/patologia , Proteínas Cromossômicas não Histona/biossíntese , Proteínas de Ligação a DNA/biossíntese , Estadiamento de Neoplasias , Neoplasias Ovarianas/genética , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL9/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/patologia , Fatores de Transcrição
18.
Int J Biochem Cell Biol ; 43(11): 1582-90, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21807114

RESUMO

The mitogen activated protein kinase (MAPK) signaling pathways play significant roles in fundamental cellular processes, such as cell growth and differentiation. It has been shown that the specificity and efficacy of phosphorylation by MAP kinases rely upon distinct MAPK-docking domains (D-domains) found in a wide range of MAPK substrates including the ETS-transcription factor Elk-1. Importantly, the MAPK signaling cascade converges with the hypoxia-induced signaling pathway. The key regulator of hypoxia signaling is the heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1). The α-subunit of HIF-1 (HIF-1α) is a substrate for the ERK2 MAP kinase. Unraveling the interplay of these main signaling systems is a prerequisite for understanding their role in tumor growth, a situation sustained by simultaneous mitogenic and hypoxic signals. In this work, we investigated the molecular cues that direct HIF-1α recognition and phosphorylation by ERK2. We showed that HIF-1α possesses a MAPK docking domain. Utilizing surface plasmon resonance (SPR) methodologies we demonstrated efficient binding between HIF-1α and ERK2, with a K(D) value in the low micromolar range. Although, the D-domain did not contribute to the above interaction significantly, it could act in trans by recruiting ERK2 and conferring responsiveness to poor ERK substrates. These results indicate that, via its conserved D-domain, HIF-1α could serve as a platform for ERK2 in the nucleus of the cell, thus potentially facilitating phosphorylation of other ERK2 substrates. The identification of an ERK2 recognition domain on HIF-1α opens new avenues for the analysis of HIF-1α-related ERK2 signaling and may allow designing of interfering compounds.


Assuntos
Transformação Celular Neoplásica/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Transformação Celular Neoplásica/genética , Clonagem Molecular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Dados de Sequência Molecular , Fosforilação , Plasmídeos , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Ressonância de Plasmônio de Superfície , Transformação Bacteriana
19.
Cancer Biol Ther ; 7(2): 255-64, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18059191

RESUMO

Tumor growth results in hypoxia. Understanding the mechanisms of gene expression reprogramming under hypoxia may provide important clues to cancer pathogenesis. We studied miRNA genes that are regulated by hypoxia in ovarian cancer cell lines by TaqMan miRNA assay containing 157 mature miRNAs. MiR-210 was the most prominent miRNA consistently stimulated under hypoxic conditions. We provide evidence for the involvement of the HIF signaling pathway in miR-210 regulation. Biocomputational analysis and in vitro assays demonstrated that e2f transcription factor 3 (e2f3), a key protein in cell cycle, is regulated by miR-210. E2F3 was further confirmed to be downregulated at the protein level upon induction of miR-210. Importantly, we found remarkably high frequency of miR-210 gene copy deletions in ovarian cancer patients (64%, n = 114) and that gene copy number correlates with miR-210 expression levels. Taken together, our results indicate that miR-210 plays a crucial role in tumor onset as a key regulator of the hypoxia response and provide evidence for a link between hypoxia and the regulation of cell cycle.


Assuntos
Ciclo Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Hipóxia/metabolismo , MicroRNAs/fisiologia , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Biologia Computacional/métodos , Feminino , Dosagem de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Deleção de Sequência
20.
PLoS One ; 3(3): e1758, 2008 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-18335034

RESUMO

PIK3CA upregulation, amplification and mutation have been widely reported in ovarian cancers and other tumors, which strongly suggests that PIK3CA is a promising therapeutic target. However, to date the mechanisms underlying PIK3CA regulation and activation in vivo is still unclear. During tumorigenesis, host-tumor interactions may play a critical role in editing the tumor. Here, we report a novel mechanism through which the tumor microenvironment activates the PIK3CA oncogene. We show that PIK3CA upregulation occurs in non-proliferating tumor regions in vivo. We identified and characterized the PIK3CA 5' upstream transcriptional regulatory region and confirmed that PIK3CA is transcriptionally regulated through NF-kappaB pathway. These results offer a new mechanism through which the tumor microenvironment directly activates oncogenic pathways in tumor cells.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , Neoplasias Ovarianas/genética , Fosfatidilinositol 3-Quinases/genética , Transcrição Gênica , Sequência de Bases , Classe I de Fosfatidilinositol 3-Quinases , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA