Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 114: 47-56, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32980238

RESUMO

Thyroid hormones (TH; T3 and T4) play a fundamental role in the fetal stage to the adult phase, controlling gene and protein expression in virtually all tissues. The endocrine and CNS systems have relevant interaction, and the TH are pivotal for the proper functioning of the CNS. A slight failure to regulate TH availability during pregnancy and/or childhood can lead to neurological disorders, for example, autism and cognitive impairment, or depression. In this review, we highlight how TH acts in controlling gene expression, its role in the CNS, and what substances widely found in the environment can cause in this tissue. We highlight the role of Endocrine Disruptors used on an everyday basis in the processing of mRNAs responsible for neurodevelopment. We conclude that TH, more precisely T3, acts mainly throughout its nuclear receptors, that the deficiency of this hormone, either due to the lack of its main substrate iodine, or by to incorrect organification of T4 and T3 in the gland, or by a mutation in transporters, receptors and deiodinases may cause mild (dysregulated mood in adulthood) to severe neurological impairment (Allan-Herndon-Dudley syndrome, presented as early as childhood); T3 is responsible for the expression of numerous CNS genes related to oxygen transport, growth factors, myelination, cell maturation. Substances present in the environment and widely used can interfere with the functioning of the thyroid gland, the action of TH, and the functioning of the CNS.


Assuntos
Sistema Nervoso Central/fisiologia , Expressão Gênica/genética , Hormônios Tireóideos/uso terapêutico , Animais , Humanos , Camundongos , Hormônios Tireóideos/farmacologia
2.
Metab Brain Dis ; 37(8): 2735-2750, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35951206

RESUMO

Alzheimer disease's (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. The central nervous system is an important target of thyroid hormones (TH). An inverse association between serum triiodothyronine (T3) levels and the risk of AD symptoms and progression has been reported. We investigated the effects of T3 treatment on the depression-like behavior in male transgenic 3xTg-AD mice. Animals were divided into 2 groups treated with daily intraperitoneal injections of 20 ng/g of body weight (b.w.) L-T3 (T3 group) or saline (vehicle, control group). The experimental protocol lasted 21 days, and behavioral tests were conducted on days 18-20. At the end of the experiment, the TH profile and hippocampal gene expression were evaluated. The T3-treated group significantly increased serum T3 and decreased thyroxine (T4) levels. When compared to control hippocampal samples, the T3 group exhibited attenuated glycogen synthase kinase-3 (GSK3), metalloproteinase 10 (ADAM10), amyloid-beta precursor-protein (APP), serotonin transporter (SERT), 5HT1A receptor, monocarboxylate transporter 8 (MCT8) and bone morphogenetic protein 7 (BMP-7) gene expression, whereas augmented superoxide dismutase 2 (SOD2) and Hairless gene expression. T3-treated animals also displayed reduced immobility time in both the tail suspension and forced swim tests, and in the latter presented a higher latency time compared to the control group. Therefore, our findings suggest that in an AD mouse model, T3 supplementation promotes improvements in depression-like behavior, through the modulation of the serotonergic related genes involved in the transmission mediated by 5HT1A receptors and serotonin reuptake, and attenuated disease progression.


Assuntos
Doença de Alzheimer , Tri-Iodotironina , Animais , Camundongos , Masculino , Tri-Iodotironina/farmacologia , Tri-Iodotironina/uso terapêutico , Doença de Alzheimer/metabolismo , Depressão/tratamento farmacológico , Quinase 3 da Glicogênio Sintase , Camundongos Transgênicos , Hormônios Tireóideos/metabolismo , Modelos Animais de Doenças
3.
Environ Toxicol ; 36(6): 1031-1042, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33512083

RESUMO

Agrochemicals became a public health concern due to increased human exposure and possible endocrine disruption effects in several organs, including the brain. Thyroid hormones controls neurodevelopment, which turn them sensitive to endocrine disruptors (EDs). In this work, we evaluated the effect of glyphosate-based herbicides (GBH) as an intergenerational endocrine disrupter on thyroid homeostasis in cerebellar cells. Female pregnant Wistar rats were exposed to Roundup Transorb® solution at 5 and 50 mg/kg/day, from gestation day 18 to post-natal day 5 (P5). Cerebellum of male offspring was used to evaluate gene expression. The mRNA levels of thyroid hormone receptors, hormonal conversion enzymes, hormone transporters, as well as, de novo epigenetic regulators were altered, with some of these genes presenting a non-monotonic dose response. Furthermore, metabolomic profile correlation with tested dose demonstrated altered metabolic profile, in agreement with cerebellar gene alterations. Moreover, cerebellar primary cultures exposed to non-toxic GBH concentration presented a decrease level in glial fibrillary acidic protein, a protein regulated by endocrine signals. In conclusion, our results indicate that animals exposed to non-toxic GBH doses during perinatal phase carry intergenerational alterations in key regulators of cellular thyroid hormone homeostasis and epigenetic controllers in adulthood, indicating the possible ED effect of GBH based on epigenetic alterations.


Assuntos
Herbicidas , Animais , Cerebelo , Feminino , Glicina/análogos & derivados , Herbicidas/toxicidade , Homeostase , Masculino , Ratos , Ratos Wistar , Glândula Tireoide , Hormônios Tireóideos , Glifosato
4.
Clin Exp Pharmacol Physiol ; 47(7): 1272-1282, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31997362

RESUMO

Epidemiological and animal studies have demonstrated a strong association between selenium (Se) supplementation and metabolic disorders, we aimed to evaluate whether maternal Se supplementation was able to change metabolic parameters in rats' offspring. Moreover, as Se is a deiodinase (DIO) cofactor, we decided to investigate how thyroid hormones (THs) would be involved in such metabolic changes. Thereby, two groups (n = 6, ~250 g) of female Wistar rats underwent isotonic saline or sodium selenite (1 mg/kg, p.o.) treatments. Although there were no significant differences in body weight between groups, the Se treatment during pregnancy and lactation increased milk intake and the visceral white adipose tissue (WAT) in offspring. The rats whose mothers were treated with Se also presented an improvement in the glucose tolerance test and in the glucose-stimulated insulin secretion. Regarding the lipid metabolism, the Se group had a reduction of triglycerides in the liver and in WAT. These metabolic changes were accompanied by an increase in serum triiodothyronine (T3 ) and in DIO 2 expression in brown adipose tissue (BAT). We further demonstrate an increased expression of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) and nuclear respiratory factor-1 (NRF-1) mRNA in the liver. In adulthood offspring, Se supplementation programs thyroid function, glucose homeostasis, and feeding behaviour. Taken together, there is no indication that Se programming causes insulin resistance. Moreover, we conjecture that these metabolic responses are induced by increased thyroxine (T4 ) to T3 conversion by DIO2 in BAT and mediated by altered transcription factors expression associated with oxidative metabolism control in the liver.


Assuntos
Suplementos Nutricionais/análise , Lactação/efeitos dos fármacos , Metabolismo/efeitos dos fármacos , Selênio/farmacologia , Animais , Feminino , Masculino , Gravidez , Ratos , Ratos Wistar
5.
Metab Brain Dis ; 35(8): 1341-1351, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32827287

RESUMO

Serotonin exerts a significant role in the mammalian central nervous system embryogenesis and brain ontogeny. Therefore, we investigate the effect of perinatal fluoxetine (FLX), a selective serotonin reuptake inhibitor, administration on the behavioral expression of adult male Swiss mice. For this purpose, two groups (n = 6 each, and ~ 35 g) of pregnant female Swiss mice were mated. Their offspring were treated with FLX (10 mg/Kg, s.c.) from postnatal day (PND) 5 to 15. At PND 16, one male puppy of each litter was euthanized, and the hippocampus was dissected for RNA analysis. At 70 days of life, the male offspring underwent a behavioral assessment in the open field, object recognition task, light-dark box, tail suspension and rotarod test. According to our results, the programmed animals had a decrease in TPH2, 5HT1a, SERT, BDNF, and LMX1B expression. Also, it was observed less time of immobility in tail suspension test and higher grooming time in the open field test. In the light-dark box test, the FLX-treated offspring had less time in the light side than control. We also observed a low cognitive performance in the object recognition task and poor motor skill learning in the rotarod test. These findings suggest that programming with FLX during the neonatal period alters a hippocampal serotonergic system, promoting anxiety and antidepressant behavior in adults, as well as a low mnemonic capacity.


Assuntos
Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Fluoxetina/toxicidade , Hipocampo/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Animais , Animais Recém-Nascidos , Ansiedade/psicologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Feminino , Fluoxetina/administração & dosagem , Hipocampo/metabolismo , Masculino , Camundongos , Gravidez , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Fatores de Tempo
6.
Hum Mol Genet ; 26(2): 270-281, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28007906

RESUMO

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder in which the MECP2 (methyl CpG-binding protein 2) gene is mutated. Recent studies showed that RTT-derived neurons have many cellular deficits when compared to control, such as: less synapses, lower dendritic arborization and reduced spine density. Interestingly, treatment of RTT-derived neurons with Insulin-like Growth Factor 1 (IGF1) could rescue some of these cellular phenotypes. Given the critical role of IGF1 during neurodevelopment, the present study used human induced pluripotent stem cells (iPSCs) from RTT and control individuals to investigate the gene expression profile of IGF1 and IGF1R on different developmental stages of differentiation. We found that the thyroid hormone receptor (TRalpha 3) has a differential expression profile. Thyroid hormone is critical for normal brain development. Our results showed that there is a possible link between IGF1/IGF1R and the TRalpha 3 and that over expression of IGF1R in RTT cells may be the cause of neurites improvement in neural RTT-derived neurons.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Proteína 2 de Ligação a Metil-CpG/genética , Receptores de Somatomedina/genética , Síndrome de Rett/genética , Receptores alfa dos Hormônios Tireóideos/genética , Diferenciação Celular/genética , Corpos Embrioides/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Transtornos do Neurodesenvolvimento , Plasticidade Neuronal/genética , Neurônios/metabolismo , Neurônios/patologia , Receptor IGF Tipo 1 , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatologia , Coluna Vertebral/crescimento & desenvolvimento , Coluna Vertebral/patologia , Sinapses/genética , Sinapses/patologia , Transcriptoma/genética
7.
Horm Behav ; 108: 10-19, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30576638

RESUMO

The proper functioning of the maternal thyroid plays a crucial role in fetal development. Thus, the aim of our study was to verify how maternal hyperthyroidism is able to change behavioral parameters in mice offspring during adulthood. For this purpose, pregnant Swiss mice (n = 24 and ~35 g) were randomly assigned into two groups: a control and a thyroxine (T4)-treatment group. The control was treated with 0.9% saline, while the treatment group received T4 (200 µg/kg, s.c.) once daily during the entire pregnancy period. After completing 70 days of life, a part of male offspring underwent a battery of tests, including open field, dark-light box, elevated plus maze, marble burying, rotarod and tail suspension tests. The other male pups were euthanized, being hippocampus and serum collected for RNA analysis and hormones measurement, respectively. Statistical analysis was performed using Student's t-test, and the means were considered significantly different when p < 0.05. In adult offspring, a significant decrease was observed for serum T3 in treated group. It was demonstrated that the T4 group had an increase in total distance traveled in an open field test. In the elevated plus maze test, we observed a higher time in opened arms as well as an increased in percentage of entries in these arms. In the hippocampus, T4 offspring had a higher expression of tryptophan hydroxylase 2 (TPH2), serotonin transporter (SERT) and glutamate decarboxylase 67 (GAD 67) in comparison to controls. These findings suggest that prenatal T4 treatment alters hippocampal serotonergic and GABAergic systems, promoting anxiolysis in male adult offspring.


Assuntos
Afeto/efeitos dos fármacos , Ansiolíticos/farmacologia , Ansiedade/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/psicologia , Tiroxina/farmacologia , Animais , Ansiolíticos/sangue , Ansiedade/patologia , Ansiedade/psicologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipertireoidismo/patologia , Hipertireoidismo/psicologia , Masculino , Aprendizagem em Labirinto , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Tiroxina/sangue
8.
J Toxicol Environ Health A ; 82(3): 163-175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30755151

RESUMO

Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that is widely used in the manufacturing of plastics and inner linings of food cans. Previously, it was reported that BPA disturbed the sexual dimorphic nucleus of the hypothalamus and delaying the onset of puberty attributed to an estrogenic action. In addition, BPA during the perinatal period increased LH serum concentrations in male offspring of dams at doses below the reproductive NOAEL (No Observable Adverse Effect Level) based upon World Health Organization guidelines. Based upon these findings, the objective of this study was to (1) determine the effects of perinatal treatment with low doses of BPA on regulation of spermatogenesis in adult offspring and (2) elucidate molecular mechanisms involved in the pathogenesis of gonadal dysfunction. The expression of genes related to spermatogenesis was disrupted with adverse consequences on sperm production, reserves, and function. Both BPA treated groups exhibited reduction in sperm production and epithelial height of seminiferous tubules, accompanied by diminished integrity of the acrosome and plasma membrane, decreased mitochondrial activity and increased incidence of morphological abnormalities. The sperm transit time was also slower. However, only in the group receiving the higher BPA dose was transcript expression of genes affected (reduced Ar and increased Esr1). It is of interest that serum testosterone levels were elevated in the same group where Ar was decreased. Data suggest that exposure to low BPA doses during hypothalamic sexual differentiation period produces permanent deleterious effects on spermatogenesis in adulthood.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Disruptores Endócrinos/efeitos adversos , Exposição Materna/efeitos adversos , Fenóis/efeitos adversos , Espermatogênese/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Hipotálamo/crescimento & desenvolvimento , Masculino , Ratos , Ratos Wistar , Diferenciação Sexual
9.
Metab Brain Dis ; 34(3): 705-713, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30701417

RESUMO

Silver nanoparticles (AgNPs) are clusters of silver atoms with diameters that range from 1 to 100 nm. Due to the various shapes and large surface areas, AgNPs have been employed in the food and textile industries and medical fields. Therefore, because of the widespread use of these compounds, the aim of this study was to evaluate the effect of AgNP exposure on the gene and protein expression levels of Neuroglobin (Ngb) and Cytoglobin (Cygb), in the rat cortex, hippocampus and cerebellum. Post-natal day (PND) 21 male Wistar rats were randomly divided into three groups. One group received 15 µg/kg body weight of AgNP by gavage another group received 30 µg/kg and the control group that received saline, from PND23 to PND58. On PND102 the animals were euthanized and the cortex, hippocampus and cerebellum were isolated and evaluated for gene and protein expression levels of Nbg and Cygb. The results demonstrated that the 30 µg/kg AgNP group displayed increased gene and protein expression of Cygb in the cortex. In the Hippocampus, AgNP exposure did not modulate gene or protein expression levels of Ngb and Cygb. In cerebellum the Ngb gene and protein expression was increased with both doses of AgNP. AgNP exposure during prepubescence can modulate the gene and protein expression levels of Ngb and Cygb in adulthood. Furthermore, the observed modulation was specific to the cerebellum, and cortex, and was dose dependent.


Assuntos
Citoglobina/metabolismo , Nanopartículas Metálicas/toxicidade , Neuroglobina/metabolismo , Prata/toxicidade , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Globinas/efeitos dos fármacos , Globinas/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Ratos Wistar
10.
Metab Brain Dis ; 33(5): 1649-1660, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29946957

RESUMO

Exercise reduces sympathetic activity (SA), arterial pressure and heart rate in spontaneously hypertensive rats (SHR). Exercise increases oxidative stress (OS) and inflammation is implicated in the generation of reactive oxygen species (ROS) and progression of hypertension. To unravel these effects of exercise and considering that SA is driven by medullary areas, we hypothesized that swimming exercise (SW) affects the gene expression (g.e.) of proteins involved in inflammation and OS in the commissural Nucleus of the Solitary Tract (cNTS) and Rostral ventrolateral medulla (RVLM), which control the sympathetic outflow in SHR. We used male SHR and Wistar rats (14-16wks-old) which were maintained sedentary (SED) or submitted to SW (1 h/day, 5 days/wk./6wks). The g.e. of cycloxygenase-2 (COX-2), interleukin 6 (IL-6), interleukin 10 (IL-10), AT-1 receptor (AT-1r), neuroglobin (Ngb) and cytoglobin (Ctb) in cNTS and RVLM was carried out by qPCR. We observed that COX-2 g.e. increased in SW-SHR in cNTS and RVLM compared to SED-SHR. The IL-6 g.e. reduced in RVLM in SW-SHR, whereas IL-10 g.e. increased in SW-SHR in comparison to SED-SHR. The AT-1r g.e. decreased in SW-SHR in cNTS and RVLM compared to SED-SHR. The Ngb and Ctb g.e. in cNTS neurons increased in SHR and Wistar rats submitted to SW compared to SED, but only Ctb g.e. increased in RVLM in SW-SHR and Wistar in comparison to SED. Therefore, the SW altered the g.e. in cNTS and RVLM for reducing the inflammation and ROS formation, which is increased particularly in SHR, consequently decreasing the OS.


Assuntos
Inflamação/metabolismo , Bulbo/metabolismo , Condicionamento Físico Animal/fisiologia , Natação/fisiologia , Animais , Pressão Sanguínea/fisiologia , Citocinas/metabolismo , Frequência Cardíaca/fisiologia , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
11.
Metab Brain Dis ; 32(6): 1843-1851, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28721559

RESUMO

The aim of this study was to investigate the influence of Bisphenol A (BPA) exposure on Neuroglobin (Ngb) and Cytoglobin (Cygb) as well as oxidative stress gene expression in the cerebellum, hippocampus, hypothalamus and cortex. Male Wistar rats were randomly divided into 3 groups: Control and two groups receiving 2 different daily BPA dosages, 5 or 25 mg/kg from postnatal day 50 (PND50) through PND90 and they were euthanized at PND105. In the cortex, we found an increase in Ngb gene expression and also in superoxide dismutase 1 and Catalase (Cat). In the cerebellum, we found an increase in Ngb and Cat, in the hypothalamus, there was a decrease in Cygb and an increase in glutathione peroxidase and Cat and in hypoxia-inducible factor 1 alpha (Hif1α) at the low dosage and a decrease in Hif1α at the high BPA dosage. Finally, in the hippocampus, we observed a decrease in Ngb and Cygb and an increase in Hif1α. In summary, BPA promotes the modulation of both Ngb and Cygb, but such changes occur by different mechanisms depending on the exposure dose and anatomical area.


Assuntos
Compostos Benzidrílicos/administração & dosagem , Encéfalo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Globinas/genética , Proteínas do Tecido Nervoso/genética , Fenóis/administração & dosagem , Animais , Encéfalo/metabolismo , Citoglobina , Globinas/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
12.
Environ Toxicol ; 32(4): 1252-1261, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27441981

RESUMO

The side stream cigarette smoke (SSCS) is a contributing factor in the pathogenesis of cigarette smoking-induced toxicity. Hemoglobin (Hb), myoglobin (Mb), neuroglobin (Ngb), and cytoglobin (Cygb) are globins with different distributions and functions in the tissues and have similar actions by providing O2 (oxygen) for respiratory chain, detoxification of ROS and nitric oxide (NO), and protect tissues against irreversible lesions. We aimed to investigate the effects of SSCS exposure on gene and protein expression of Ngb, Cygb, and Mb in different tissue. The Ngb and Cygb gene and protein expression in the cerebral cortex increased after 1 week of rat exposure to SSCS. In hippocampus, the Ngb gene and protein expression increased after 1 week or more of exposure and no change was observed in Cygb gene and protein expression. In myocardium, Mb and Cygb gene expression increased at 1 and 4 weeks of exposure, while protein expression of both increased at 1, 2, 3, and 4 weeks. In lung, observed an increase in Cygb gene and protein expression after 2, 3, and 4 weeks of exposure. The findings suggest that SSCS modulates Ngb, Cygb, and Mb in central and peripheral tissue © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1252-1261, 2017.


Assuntos
Córtex Cerebral/metabolismo , Globinas/metabolismo , Hipocampo/metabolismo , Pulmão/metabolismo , Miocárdio/metabolismo , Fumar , Animais , Citoglobina , Globinas/genética , Hemoglobinas/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Ratos , Ratos Wistar
13.
Metab Brain Dis ; 30(6): 1401-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26334191

RESUMO

Thyroid hormones (THs) are essential and crucial for brain development, playing a role in growth and differentiation. Two globins named neuroglobin (Ngb) and cytoglobin (Cygb) are located in the brain, and each one has different distribution and function: They seem to have similar action by providing O(2) for respiratory chain, and detoxification of reactive oxygen species (ROS) and nitric oxide (NO) protecting tissues against irreversible lesions. We aimed to investigate the influence of thyroid state in Ngb and Cygb metabolism in different brain regions and evaluate their responses in cerebellum, hippocampus and cerebral cortex (hereafter called as cortex) after supraphysiological doses at different time points of TH administration. Experiments were carried out in rats, divided in eight experimental groups Control (C), thyroidectomy (Tx), and thyroidectomy treated with jugular intravenous injection (i.v). T3 (100 µl/100 g) injection and sacrificed after 30, 60, 120 min and 6, 12 and 24 h. In cortex, we found increase in Ngb gene and protein expression in different time points compared to C group, however Cygb gene and protein expression were decreased. In hippocampus, Ngb and Cygb protein expression increased 24 h after i.v. T3 injection in comparison to Tx. In cerebellum, we found increased Ngb gene expression after 120 min, 6, 12 and 24 h after T3 administration compared to Tx, and in contrast, protein expression was found to be significantly increased only 12 and 24 h compared to Tx. Ngb and Cygb expression in brain is influenced by thyroid hormone state both by its lack or excess.


Assuntos
Química Encefálica/fisiologia , Globinas/biossíntese , Globinas/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Hormônios Tireóideos/fisiologia , Animais , Química Encefálica/efeitos dos fármacos , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Citoglobina , Hipocampo/metabolismo , Masculino , Neuroglobina , Ratos , Ratos Wistar , Hormônios Tireóideos/sangue , Hormônios Tireóideos/farmacologia , Tireoidectomia , Tri-Iodotironina/farmacologia
14.
Mol Cell Endocrinol ; 579: 112086, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858610

RESUMO

Thyroid hormones (THs) are crucial in bodily functions, while iron is essential for processes like oxygen transport. Specialized proteins maintain iron balance, including ferritin, transferrin, ferroportin, and hepcidin. Research suggests that THs can influence iron homeostasis by affecting mRNA and protein expression, such as ferritin and transferrin. Our study focused on male rats to assess mRNA expression of iron homeostasis-related proteins and metabolomics in thyroid dysfunction. We found altered gene expression across various tissues (liver, duodenum, spleen, and kidney) and identified disrupted metabolite patterns in thyroid dysfunction. These findings highlight tissue-specific effects of thyroid dysfunction on essential iron homeostasis proteins and provide insights into associated metabolic changes. Our research contributes to understanding the intricate interplay between thyroid hormones and iron balance. By unveiling tissue-specific gene expression alterations and metabolic disruptions caused by thyroid dysfunction, our work lays a foundation for future investigations to explore underlying mechanisms and develop targeted strategies for managing iron-related complications in thyroid disorders.


Assuntos
Ferro , Doenças da Glândula Tireoide , Ratos , Masculino , Animais , Ferritinas/genética , Ferritinas/metabolismo , Transferrina/metabolismo , Homeostase , Doenças da Glândula Tireoide/genética , Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hormônios Tireóideos
15.
Front Physiol ; 14: 1224505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37772054

RESUMO

Introduction: The medial preoptic area (mPOA) participates in thermoregulatory control and blood pressure modulation as shown by studies with electrical stimulation of this area or cobalt chloride injection, a non-selective synapse inhibitor. This study aimed to investigate whether angiotensin II (Ang II) and GABA could act or not in the mPOA to mediate the cardiovascular and micturition control pathways. Methods: Female Wistar rats were submitted to stereotaxic surgery for implantation of a guide cannula into the mPOA 7 days prior to the experiments. Afterwards, the animals were isoflurane- anesthetized and submitted to the catheterization of the femoral artery and vein and urinary bladder cannulation for mean arterial pressure (MAP), heart rate (HR), and intravesical pressure (IP) recordings, respectively. After the baseline MAP, HR, and IP recordings for 15 min, Ang II (0.1 nM, 1 µL), losartan (AT-1 receptor antagonist, 100 nM, 1 µL), GABA (50 mM, 1 µL) or saline (1 µL) were injected into the mPOA, and the variables were measured for additional 30 min. In a different group of rats, the AT-1 receptor, angiotensin II converting enzyme (ACE), and GABAa receptor gene expression was evaluated in mPOA samples by qPCR. The data are as mean ± SEM and submitted to One-way ANOVA (Tukey posttest) or paired Student t-test (P <0.05). Results: The injection of Ang II into the mPOA evoked a significant hypotension (-37±10 mmHg, n = 6, p = 0.024) and bradycardia (-47 ± 20 bpm, p = 0.030) compared to saline (+1 ± 1 mmHg and +6 ± 2 bpm, n = 6). A significant increase in IP was observed after Ang II injection into the mPOA (+72.25 ± 17.91%, p = 0.015 vs. -1.80 ± 2.98%, n = 6, saline). No significant changes were observed in MAP, HR and IP after the losartan injection in the mPOA compared to saline injection. Injection of GABA into the mPOA evoked a significant fall in MAP and HR (-68 ± 2 mmHg, n = 6, p < 0.0001 and -115 ± 14 bpm, n = 6, p = 0.0002 vs. -1 ± 1 mmHg and +4 ± 2 bpm, n = 6, saline), but no significant changes were observed in IP. The AT-1 receptor, ACE and GABAa receptor mRNA expression was observed in all mPOA samples. Discussion: Therefore, in female rats, Ang II mediated transmission in the mPOA is involved in the cardiovascular regulation and in the control of central micturition pathways. A phasic control dependent on AT-1 receptors in the mPOA seems to be involved in the regulation of those cardiovascular and intravesical 3 parameters. In contrast, GABAergic transmission in the mPOA participates in the pathways of cardiovascular control in anesthetized female rats, nevertheless, this neurotransmission is not involved in the micturition control.

17.
Int J Dev Neurosci ; 82(6): 486-498, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35718760

RESUMO

Serotonin exerts a significant role in the mammalian central nervous system embryogenesis and brain ontogeny. Therefore, we investigate the effect of neonatal treatment of d-fenfluramine (d-FEN), a serotonin (5-HT) releaser, on the behavioral expression of adult male Swiss mice. For this purpose, we divided pregnant female Swiss mice into two groups (n = 6 each and ~35 g). Their offspring were treated with d-FEN (3 mg/kg, s.c.) from postnatal days (PND) 5 to 20. At PND 21, one male puppy of each litter was euthanized; the midbrain and the hippocampus were dissected for RNA analysis. At PND 70, the male offspring underwent a behavioral assessment in the open field, elevated plus-maze, light-dark box, tail suspension, and rotarod test. The programmed animals had a decrease in 5HT1a, serotonin transporter (SERT), and brain-derived neurotrophic factor (BDNF) expression in the mesencephalic raphe region. Alternatively, there was a reduction only in the tryptophan hydroxylase (TPH2) and BDNF expression in the hippocampus. In the light-dark box test, offspring of the treated group had higher latency to light and less time on the light side than the control. Also, it was observed less time of immobility in the tail suspension test. We also observed low motor skill learning in the rotarod test. These findings suggest that programming with d-FEN during the neonatal period alters a mesencephalic and hippocampal serotonergic system, promoting anxiety, antidepressant behavior, low coordination, and motor learning in adults.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Serotonina , Animais , Antidepressivos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cães , Feminino , Fenfluramina , Masculino , Mamíferos/metabolismo , Camundongos , Gravidez , RNA , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo
18.
Brain Res ; 1774: 147726, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785257

RESUMO

Moderate exercise reduces arterial pressure (AP) and heart rate (HR) in spontaneously hypertensive rats (SHR) and changes neurotransmission in medullary areas involved in cardiovascular regulation. We investigated if regularly swimming exercise (SW) affects the cardiovascular adjustments mediated by opioidergic neuromodulation in the RVLM in SHR and Wistar-Kyoto (WKY) rats. Rats were submitted to 6 wks of SW. The day after the last exercise bout, α-chloralose-anesthetized rats underwent a cannulation of the femoral artery for AP and HR recordings, and Doppler flow probes were placed around the lower abdominal aorta and superior mesenteric artery. Bilateral injection of endomorphin-2 (EM-2, 0.4 mmol/L, 60 nL) into the RVLM increased MAP in SW-SHR (20 ± 4 mmHg, N = 6), which was lower than in sedentary (SED)-SHR (35 ± 4 mmHg, N = 6). The increase in MAP in SW-SHR induced by EM-2 into the RVLM was similar in SED- and SW-WKY. Naloxone (0.5 mmol/L, 60 nL) injected into the RVLM evoked an enhanced hypotension in SW-SHR (-66 ± 8 mmHg, N = 6) compared to SED-SHR (-25 ± 3 mmHg, N = 6), which was similar in SED- and SW-WKY. No significant changes were observed in HR after EM-2 or naloxone injections into the RVLM. Changes in hindquarter and mesenteric conductances evoked by EM-2 or naloxone injections into the RVLM in SW- or SED-SHR were not different. Mu Opioid Receptor expression by Western blotting was reduced in SW-SHR than in SED-SHR and SW-WKY. Therefore, regularly SW alters the opioidergic neuromodulation in the RVLM in SHR and modifies the mu opioid receptor expression in this medullary area.


Assuntos
Analgésicos Opioides/farmacologia , Hipertensão/metabolismo , Bulbo/metabolismo , Neurônios/efeitos dos fármacos , Condicionamento Físico Animal , Receptores Opioides mu/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Bulbo/efeitos dos fármacos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neurônios/metabolismo , Oligopeptídeos/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Natação
19.
Int J Exerc Sci ; 15(2): 760-770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992182

RESUMO

The present study aimed to compare the exercise order of an acute bout of resistance exercise (RT) on acute thyroid hormonal responses. Eight (n = 8) healthy men were randomly separated into two experimental groups: A) the order from multi- to single-joint exercises (MJ-SJ) and B) the order from single- to multijoint exercises (SJ-MJ). For all exercises in both orders, the subjects were submitted to 3 sets of 10 repetitions, with rest intervals of 2 minutes between sets and 3 minutes between exercises. Blood samples were collected at rest and 0, 15, 30, 60 and 120 min after the end of the exercise session. In thyroidstimulating hormone (TSH), differences between groups (MJ-SJ < SJ-MJ) were observed within 15 minutes after the session. In 3,5,3'-triiodothyronine (T3), differences between groups were observed between 30 (MJ-SJ > SJ-MJ) and 120 minutes (MJ-SJ < SJ-MJ) after the session. In 3,5,3',5'-tetraiodothyronine (T4), differences between groups (MJ-SJ > SJ-MJ) were observed within 15 minutes after the RT session. The order of RT exercises significantly changes the hormonal responses of TSH, T3 and T4. In addition, the exercise order should be chosen according to the individual's objectives.

20.
Front Physiol ; 13: 920636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928558

RESUMO

Angiotensin-(1-7) is a peptide produced by different pathways, and regardless of the route, the angiotensin-converting enzyme 2 (ACE-2) is involved in one of the steps of its synthesis. Angiotensin-(1-7) binds to Mas receptors localized in different cells throughout the body. Whether angiotensin-(1-7) exerts any action in the urinary bladder (UB) is still unknown. We investigated the effects of intravenous and topical (in situ) administration of angiotensin-(1-7) on intravesical pressure (IP) and cardiovascular variables. In addition, the Mas receptors and ACE-2 gene and protein expression were analyzed in the UB. Adult female Wistar rats were anesthetized with 2% isoflurane in 100% O2 and submitted to the catheterization of the femoral artery and vein for mean arterial pressure (MAP) and heart rate (HR) recordings, and infusion of drugs, respectively. The renal blood flow was acquired using a Doppler flow probe placed around the left renal artery and the renal conductance (RC) was calculated as a ratio of Doppler shift (kHz) and MAP. The cannulation of the UB was performed for IP recording. We observed that angiotensin-(1-7) either administered intravenously [115.8 ± 28.6% angiotensin-(1-7) vs. -2.9 ± 1.3% saline] or topically [147.4 ± 18.9% angiotensin-(1-7) vs. 3.2 ± 2.8% saline] onto the UB evoked a significant (p < 0.05) increase in IP compared to saline and yielded no changes in MAP, HR, and RC. The marked response of angiotensin-(1-7) on the UB was also investigated using quantitative real-time polymerase chain reaction and western blotting assay, which demonstrated the mRNA and protein expression of Mas receptors in the bladder, respectively. ACE-2 mRNA and protein expression was also observed in the bladder. Therefore, the findings demonstrate that angiotensin-(1-7) acts in the UB to increase the IP and suggest that this peptide can be also locally synthesized in the UB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA