Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214418

RESUMO

Three-dimensional (3D) culture models have gained relevant interest in tissue engineering and drug discovery owing to their suitability to reproduce in vitro some key aspects of human tissues and to provide predictive information for in vivo tests. In this context, the use of hydrogels as artificial extracellular matrices is of paramount relevance, since they allow closer recapitulation of (patho)physiological features of human tissues. However, most of the analyses aimed at characterizing these models are based on time-consuming and endpoint assays, which can provide only static and limited data on cellular behavior. On the other hand, biosensing systems could be adopted to measure on-line cellular activity, as currently performed in bi-dimensional, i.e., monolayer, cell culture systems; however, their translation and integration within 3D hydrogel-based systems is not straight forward, due to the geometry and materials properties of these advanced cell culturing approaches. Therefore, researchers have adopted different strategies, through the development of biochemical, electrochemical and optical sensors, but challenges still remain in employing these devices. In this review, after examining recent advances in adapting existing biosensors from traditional cell monolayers to polymeric 3D cells cultures, we will focus on novel designs and outcomes of a range of biosensors specifically developed to provide real-time analysis of hydrogel-based cultures.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Técnicas de Cultura de Células/métodos , Células Cultivadas , Humanos , Hidrogéis/química , Engenharia Tecidual
2.
Haematologica ; 106(10): 2598-2612, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32855274

RESUMO

Bone skeletal alterations are no longer considered a rare event in chronic lymphocytic leukemia (CLL), especially at more advanced stages of the disease. This study is aimed at elucidating the mechanisms underlying this phenomenon. Bone marrow stromal cells, induced to differentiate toward osteoblasts in osteogenic medium, appeared unable to complete their maturation upon co-culture with CLL cells, CLL-cell-derived conditioned media (CLL-cm) or CLL-sera (CLL-sr). Inhibition of osteoblast differentiation was documented by decreased levels of RUNX2 and osteocalcin mRNA expression, by increased osteopontin and DKK-1 mRNA levels, and by a marked reduction of mineralized matrix deposition. The addition of neutralizing TNFα, IL-11 or anti-IL-6R monoclonal antibodies to these cocultures resulted in restoration of bone mineralization, indicating the involvement of these cytokines. These findings were further supported by silencing TNFα, IL-11 and IL-6 in leukemic cells. We also demonstrated that the addition of CLL-cm to monocytes, previously stimulated with MCSF and RANKL, significantly amplified the formation of large, mature osteoclasts as well as their bone resorption activity. Moreover, enhanced osteoclastogenesis, induced by CLL-cm, was significantly reduced by treating cultures with the anti-TNFα monoclonal antibody infliximab. An analogous effect was observed with the use of the BTK inhibitor, ibrutinib. Interestingly, CLL cells co-cultured with mature osteoclasts were protected from apoptosis and upregulated Ki-67. These experimental results parallel the direct correlation between amounts of TNFα in CLL-sr and the degree of compact bone erosion that we previously described, further strengthening the indication of a reciprocal influence between leukemic cell expansion and bone structure derangement.


Assuntos
Interleucina-11 , Interleucina-6 , Leucemia Linfocítica Crônica de Células B , Osteogênese , Fator de Necrose Tumoral alfa , Diferenciação Celular , Células Cultivadas , Citocinas , Humanos , Interleucina-11/genética , Interleucina-6/genética , Osteoblastos , Osteoclastos , Fator de Necrose Tumoral alfa/genética
3.
Int J Mol Sci ; 20(2)2019 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-30642077

RESUMO

Chronic lymphocytic leukemia (CLL) is characterized by the progressive expansion of B lymphocytes CD5+/CD23+ in peripheral blood, lymph-nodes, and bone marrow. The pivotal role played by the microenvironment in disease pathogenesis has become increasingly clear. We demonstrated that bone marrow stromal cells and trabecular bone cells sustain survival of leukemic B cells through the production of hepatocyte growth factor (HGF). Indeed the trans-membrane kinase receptor for HGF, c-MET, is expressed on CLL cells and STAT3 TYR705 or AKT phosphorylation is induced after HGF/c-MET interaction. We have further observed that c-MET is also highly expressed in a peculiar type of cells of the CLL-microenvironment showing nurturing features for the leukemic clone (nurse-like cells: NLCs). Since HGF treatment drives monocytes toward the M2 phenotype and NLCs exhibit features of tumor associated macrophages of type 2 we suggested that HGF, released either by cells of the microenvironment or leukemic cells, exerts a double effect: i) enhances CLL cells survival and ii) drives differentiation of monocytes-macrophages to an oriented immune suppressive phenotype. We here discuss how paracrine, but also autocrine production of HGF by malignant cells, may favor leukemic clone expansion and resistance to conventional drug treatments in CLL, as well as in other hematological malignancies. Novel therapeutic approaches aimed to block HGF/c-MET interactions are further proposed.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Comunicação Autócrina , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Comunicação Parácrina , Microambiente Tumoral , Regulação para Cima
4.
Haematologica ; 99(6): 1078-87, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24561793

RESUMO

Hepatocyte growth factor, produced by stromal and follicular dendritic cells, and present at high concentrations in the sera of patients with chronic lymphocytic leukemia, prolongs the survival of leukemic B cells by interacting with their receptor, c-MET. It is, however, unknown whether hepatocyte growth factor influences microenvironmental cells, such as nurse-like cells, which deliver survival signals to the leukemic clone. We evaluated the expression of c-MET on nurse-like cells and monocytes from patients with chronic lymphocytic leukemia and searched for phenotypic/functional features supposed to be influenced by the hepatocyte growth factor/c-MET interaction. c-MET is expressed at high levels on nurse-like cells and at significantly higher levels than normal on monocytes from patients. Moreover, the hepatocyte growth factor/c-MET interaction activates STAT3(TYR705) phosphorylation in nurse-like cells. Indoleamine 2,3-dioxygenase, an enzyme modulating T-cell proliferation and induced on normal monocytes after hepatocyte growth factor treatment, was detected together with interleukin-10 on nurse-like cells, and on freshly-prepared patients' monocytes. Immunohistochemical/immunostaining analyses demonstrated the presence of c-MET(+) and indoleamine 2,3-dioxygenase(+) cells in lymph node biopsies, co-expressed with CD68 and vimentin. Furthermore nurse-like cells and chronic lymphocytic monocytes significantly inhibited T-cell proliferation, prevented by anti-transforming growth factor beta and interleukin-10 antibodies and indoleamine 2,3-dioxygenase inhibitors, and supported CD4(+)CD25(high+)/FOXP3(+) T regulatory cell expansion. We suggest that nurse-like cells display features of immunosuppressive type 2 macrophages: higher hepatocyte growth factor levels, produced by leukemic or other microenvironmental surrounding cells, may cooperate to induce M2 polarization. Hepatocyte growth factor may thus have a dual pathophysiological role: directly through enhancement of survival of the leukemic clone and indirectly by favoring T-cell immunosuppression.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Células Cultivadas , Técnicas de Cocultura , Expressão Gênica , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/metabolismo , Fator de Transcrição STAT3/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
5.
Biotechnol Bioeng ; 111(11): 2303-16, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24888215

RESUMO

In "situ" tissue engineering is a promising approach in regenerative medicine, envisaging to potentiate the physiological tissue repair processes by recruiting the host's own cellular progenitors at the lesion site by means of bioactive materials. Despite numerous works focused the attention in characterizing novel chemoattractant molecules, only few studied the optimal way to present signal in the microenvironment, in order to recruit cells more effectively. In this work, we have analyzed the effects of gradients of stromal derived factor-1 (SDF-1) on the migratory behavior of human mesenchymal stem cells (MSCs). We have characterized the expression of the chemokine-associated receptor, CXCR4, using cytofluorimetric and real-time PCR analyses. Gradients of SDF-1 were created in 3D collagen gels in a chemotaxis chamber. Migration parameters were evaluated using different chemoattractant concentrations. Our results show that cell motion is strongly affected by the spatio-temporal features of SDF-1 gradients. In particular, we demonstrated that the presence of SDF-1 not only influences cell motility but alters the cell state in terms of SDF-1 receptor expression and productions, thus modifying the way cells perceive the signal itself. Our observations highlight the importance of a correct stimulation of MSCs by means of SDF-1 in order to implement on effective cell recruitment. Our results could be useful for the creation of a "cell instructive material" that is capable to communicate with the cells and control and direct tissue regeneration. Biotechnol. Bioeng. 2014;111: 2303-2316. © 2014 Wiley Periodicals, Inc.


Assuntos
Movimento Celular , Quimiocina CXCL12/metabolismo , Quimiotaxia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR4/biossíntese
6.
Biotechnol Bioeng ; 111(10): 2107-19, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25073412

RESUMO

A theoretical model of the 3D scaffold internal architecture has been implemented with the aim to predict the effects of some geometrical parameters on total porosity, Young modulus, buckling resistance and permeability of the graft. This model has been adopted to produce porous poly-caprolacton based grafts for chondral tissue engineering applications, best tuning mechanical and functional features of the scaffolds. Material prototypes were produced with an internal geometry with parallel oriented cylindrical pores of 200 µm of radius (r) and an interpore distance/pores radius (d/r) ratio of 1. The scaffolds have been then extensively characterized; progenitor cells were then used to test their capability to support cartilaginous matrix deposition in an ectopic model. Scaffold prototypes fulfill both the chemical-physical requirements, in terms of Young's modulus and permeability, and the functional needs, such as surface area per volume and total porosity, for an enhanced cellular colonization and matrix deposition. Moreover, the grafts showed interesting chondrogenic potential in vivo, besides offering adequate mechanical performances in vitro, thus becoming a promising candidate for chondral tissues repair. Finally, a very good agreement was found between the prediction of the theoretical model and the experimental data. Many assumption of this theoretical model, hereby applied to cartilage, may be transposed to other tissue engineering applications, such as bone substitutes.


Assuntos
Materiais Biocompatíveis/química , Cartilagem/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Bovinos , Células Cultivadas , Condrócitos/citologia , Módulo de Elasticidade , Teste de Materiais , Camundongos , Modelos Químicos , Porosidade , Células-Tronco/citologia
7.
Nanomaterials (Basel) ; 14(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39330662

RESUMO

Neuroblastoma (NB) is a solid tumor occurring in infancy and childhood. Its high-risk form has currently a survival rate <50%, despite aggressive treatments. This worrying scenario is worsened by drug-induced secondary tumorigenesis and the emergency of drug resistance, calling for the urgent development of new extra-genomic treatments. Triphenyl phosphonium salts (TPPs) are mitochondria-targeting compounds that exert anticancer effects, impair mitochondria functions, and damage DNA at the same time. Despite several biochemical applications, TPP-based bola-amphiphiles self-assembling nanoparticles (NPs) in water have never been tested as antitumor agents. Here, with the aim of developing new antitumor devices to also counteract resistant forms of HR-NB, the anticancer effects of a TPP-based bola-amphiphile molecule have been investigated in vitro for the first time. To this end, we considered the previously synthesized and characterized sterically hindered quaternary phosphonium salt (BPPB). It embodies both the characteristics of mitochondria-targeting compounds and those of bola-amphiphiles. The anticancer effects of BPPB were assessed against HTLA-230 human stage-IV NB cells and their counterpart, which is resistant to etoposide (ETO), doxorubicin (DOX), and many other therapeutics (HTLA-ER). Very low IC50 values of 0.2 µM on HTLA-230 and 1.1 µM on HTLA-ER (538-fold lower than that of ETO) were already determined after 24 h of treatment. The very low cell viability observed after 24 h did not significantly differ from that observed for the longest exposure timing. The putative future inclusion of BPPB in a chemotherapeutic cocktail for HR-NB was assessed by investigating in vitro its cytotoxic effects against mammalian cell lines. These included monkey kidney cells (Cos-7, IC50 = 4.9 µM), human hepatic cells (HepG2, IC50 = 9.6 µM), a lung-derived fibroblast cell line (MRC-5, IC50 = 2.8 µM), and red blood cells (RBCs, IC50 = 14.9 µM). Appreciable to very high selectivity indexes (SIs) have been determined after 24 h treatments (SIs = 2.5-74.6), which provided evidence that both NB cell populations were already fully exterminated. These in vitro results pave the way for future investigations of BPPB on animal models and upon confirmation for the possible development of BPPB as a novel therapeutic to treat MDR HR-NB cells.

8.
Cancers (Basel) ; 15(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894425

RESUMO

Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in Western countries. Although characterized by the progressive expansion and accumulation of leukemic B cells in peripheral blood, CLL cells develop in protective niches mainly located within lymph nodes and bone marrow. Multiple interactions between CLL and microenvironmental cells may favor the expansion of a B cell clone, further driving immune cells toward an immunosuppressive phenotype. Here, we summarize the current understanding of bone tissue alterations in CLL patients, further addressing and suggesting how the multiple interactions between CLL cells and osteoblasts/osteoclasts can be involved in these processes. Recent findings proposing the disruption of the endosteal niche by the expansion of a leukemic B cell clone appear to be a novel field of research to be deeply investigated and potentially relevant to provide new therapeutic approaches.

9.
J Mater Sci Mater Med ; 23(11): 2727-38, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22875605

RESUMO

The development of advanced materials with biomimetic features in order to elicit desired biological responses and to guarantee tissue biocompatibility is recently gaining attention for tissue engineering applications. Bioceramics, such as hydroxyapatite-based biomaterials are now used in a number of different applications throughout the body, covering all areas of the skeleton, due to their biological and chemical similarity to the inorganic phases of bones. When bioactive sintered hydroxyapatite (HA) is desired, biomolecular modification of these materials is needed. In the present work, we investigated the influence of plasma surface modification coupled to chemical grafting on the cell growth compliance of HA 3D scaffolds.


Assuntos
Divisão Celular , Durapatita/química , Gases em Plasma , Alicerces Teciduais , Materiais Biocompatíveis , Células Cultivadas , Corantes Fluorescentes/química , Humanos , Microscopia Eletrônica de Varredura , Espectrometria de Fluorescência , Propriedades de Superfície , Difração de Raios X
10.
Materials (Basel) ; 15(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35057189

RESUMO

We present a two-step surface modification process to tailor the micro and nano morphology of niobium oxide layers. Niobium was firstly anodized in spark regime in a Ca- and P-containing solution and subsequently treated by acid etching. The effects of anodizing time and applied potential on the surface morphology is investigated with SEM and AFM, complemented by XPS compositional analysis. Anodizing with a limiting potential of 250 V results in the fast growth of oxide layers with a homogeneous distribution of micro-sized pores. Cracks are, however, observed on 250 V grown layers. Limiting the anodizing potential to 200 V slows down the oxide growth, increasing the anodizing time needed to achieve a uniform pore coverage but produces fracture-free oxide layers. The surface nano morphology is further tuned by a subsequent acid etching process that leads to the formation of nano-sized pits on the anodically grown oxide surface. In vitro tests show that the etching-induced nanostructure effectively promotes cell adhesion and spreading onto the niobium oxide surface.

11.
Cancers (Basel) ; 14(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36497460

RESUMO

Significant skeletal alterations are present in Chronic Lymphocytic Leukemia (CLL) patients; bone erosion, particularly evident in the long bone shaft, appeared increased in the progressive disease stage. Moreover, the partial colonization of the bone with reactive bone marrow we documented via PET-FDG imaging suggests that neoplastic cell overgrowth contributes to bone derangement. Indeed, cytokines released by leukemic B cells impair osteoblast differentiation and enhance osteoclast formation in vitro. CD16, Fcγ-RIIIa, has been previously indicated as a marker of osteoclast precursors. We demonstrate, here, that the percentage of circulating monocytes, CD16+, is significantly higher in CLL patients than in normal controls and directly correlated with the extent of bone erosion. When we assessed if healthy monocytes, treated with a CLL-conditioned medium, modulated RANK, RANKL and CD16, we observed that all these molecules were up-regulated and CD16 to a greater extent. Altogether, these findings suggest that leukemic cells facilitate osteoclast differentiation. Interestingly, the evidence that monocytes, polarized toward the M2 phenotype, were characterized by high CD16 expression and showed a striking propensity to differentiate toward osteoclasts may provide further explanations for the enhanced levels of bone erosion detected, in agreement with the high number of immunosuppressive-M2 cells present in these patients.

12.
Haematologica ; 96(7): 1015-23, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21486864

RESUMO

BACKGROUND: Chronic lymphocytic leukemia cells are characterized by an apparent longevity in vivo which is lost when they are cultured in vitro. Cellular interactions and factors provided by the microenvironment appear essential to cell survival and may protect leukemic cells from the cytotoxicity of conventional therapies. Understanding the cross-talk between leukemic cells and stroma is of interest for identifying signals supporting disease progression and for developing novel therapeutic strategies. DESIGN AND METHODS: Different cell types, sharing a common mesenchymal origin and representative of various bone marrow components, were used to challenge the viability of leukemic cells in co-cultures and in contact-free culture systems. Using a bioinformatic approach we searched for genes shared by lineages prolonging leukemic cell survival and further analyzed their biological role in signal transduction experiments. RESULTS: Human bone marrow stromal cells, fibroblasts, trabecular bone-derived cells and an osteoblast-like cell line strongly enhanced survival of leukemic cells, while endothelial cells and chondrocytes did not. Gene expression profile analysis indicated two soluble factors, hepatocyte growth factor and CXCL12, as potentially involved. We demonstrated that hepatocyte growth factor and CXCL12 are produced only by mesenchymal lineages that sustain the survival of leukemic cells. Indeed chronic lymphocytic leukemic cells express a functional hepatocyte growth factor receptor (c-MET) and hepatocyte growth factor enhanced the viability of these cells through STAT3 phosphorylation, which was blocked by a c-MET tyrosine kinase inhibitor. The role of hepatocyte growth factor was confirmed by its short interfering RNA-mediated knock-down in mesenchymal cells. CONCLUSIONS: The finding that hepatocyte growth factor prolongs the survival of chronic lymphocytic leukemic cells is novel and we suggest that the interaction between hepatocyte growth factor-producing mesenchymal and neoplastic cells contributes to maintenance of the leukemic clone.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Fator de Transcrição STAT3/metabolismo , Apoptose/genética , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Células-Tronco Mesenquimais/citologia , Fosforilação , Proteínas Proto-Oncogênicas c-met/genética , RNA Mensageiro/genética , Receptores CXCR4/genética
13.
Cancer Drug Resist ; 4(4): 923-933, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35582373

RESUMO

Multiple myeloma (MM) accounts for about 10% of hematologic malignancies, and it is the second most frequent hematologic neoplasm after lymphomas. The exact etiology of MM is still unknown and, despite the introduction of more effective and safe drugs in recent years, MM remains an incurable disease. Intrinsic and acquired resistance of malignant B cells to pharmacological treatments still represents an obstacle for survival improvement. Activation of the hepatocyte growth factor/c-MET axis has been reported as involved in MM pathogenesis: hepatocyte growth factor (HGF) levels are in fact higher in sera from MM patients than in healthy controls, the HGF/c-MET pathway may be activated in an autocrine or paracrine manner, and it is interesting to note that a higher c-MET phosphorylation is associated with disease progression. Several studies have further demonstrated the over-activation of c-MET either in resistant cell lines or in primary malignant plasma cells purified from bone marrow of patients resistant to chemotherapy. For this reason, c-MET has been proposed as a potential marker of multidrug resistance in the disease. Here, we first summarize the potential role of HGF/c-MET interaction in disease evolution and then describe novel approaches targeting this axis which could be conceptually utilized, alone or in combination with standard therapies, to treat MM and possibly overcome drug resistance.

14.
Biomedicines ; 9(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572381

RESUMO

Hypersensitivity pneumonitis (HP) is a diffuse interstitial lung disease (ILD) caused by the inhalation of a variety of antigens in susceptible individuals. Patients with fibrotic HP (fHP) may show histopathological and radiological manifestations similar to patients with idiopathic pulmonary fibrosis (usual interstitial pneumonia-like pattern of fibrosis) that are associated with a worse prognosis. We describe here the establishment and characterization of a fibroblastic cell line derived from the broncho-alveolar lavage (BAL) of a patient with fHP, a 53 year old man who presented at our Pneumology Unit with cough and dyspnea. The fHP diagnosis was based on international criteria and multidisciplinary discussion. Primary fibroblasts were expanded in vitro until passage 36. These fibroblasts displayed morpho/phenotypical features of myofibroblasts, showing high positivity for α-smooth muscle actin, type I collagen, and fibronectin as determined by quantitative RT-PCR and cyto-fluorographic analysis. Cytogenetic analyses further evidenced trisomy of chromosome 10, which interestingly harbors the FGF2R gene. To our knowledge, this is the first fibroblastic cell line derived from an fHP patient and might, therefore, represent a suitable tool to model the disease in vitro. We preliminarily assessed here the activity of pirfenidone, further demonstrating a consistent inhibition of cells growth by this antifibrotic drug.

15.
J Cell Biochem ; 111(5): 1149-59, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20683904

RESUMO

Demethyl fruticulin A (SCO-1) is a compound found in Salvia corrugata leaves. SCO-1 was reported to induce anoikis in cell lines via the membrane scavenging receptor CD36. However, experiments performed with cells lacking CD36 showed that SCO-1 was able to induce apoptosis also via alternative pathways. To gain some insight into the biological processes elicited by this compound, we undertook an unbiased genomic approach. Upon exposure of glioblastoma tumor initiating cells (GBM TICs) to SCO-1 for 24 h, we observed a deregulation of the genes belonging to the glutathione metabolism pathway and of those belonging to the biological processes related to the response to stress and to chemical stimulus. On this basis, we hypothesized that the SCO-1 killing effect could result from the induction of reactive oxygen species (ROS) in the mitochondria. This hypothesis was confirmed by flow cytometry using MitoSOX, a mitochondria-selective fluorescent reporter of ROS, and by the ability of N-acetyl cysteine (NAC) to inhibit apoptosis when co-administered with SOC-1 to the GBM TICs. We further show that NAC also protects other cell types such as HeLa, MG-63, and COS-7 from apoptosis. We therefore propose that ROS production is the major molecular mechanism responsible for the pro-apoptotic effect induced by SCO-1. Consequently, SCO-1 may have a potential therapeutic value, which deserves further investigation in animal models.


Assuntos
Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Animais , Antineoplásicos , Linhagem Celular , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glutationa/biossíntese , Glutationa/metabolismo , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética
16.
BMC Cancer ; 10: 12, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20067635

RESUMO

BACKGROUND: Bone metastases are a common and dismal consequence of lung cancer that is a leading cause of death. The role of IL-7 in promoting bone metastases has been previously investigated in NSCLC, but many aspects remain to be disclosed. To further study IL-7 function in bone metastasis, we developed a human-in-mice model of bone aggression by NSCLC and analyzed human bone metastasis biopsies. METHODS: We used NOD/SCID mice implanted with human bone. After bone engraftment, two groups of mice were injected subcutaneously with A549, a human NSCLC cell line, either close or at the contralateral flank to the human bone implant, while a third control group did not receive cancer cells. Tumor and bone vitality and IL-7 expression were assessed in implanted bone, affected or not by A549. Serum IL-7 levels were evaluated by ELISA. IL-7 immunohistochemistry was performed on 10 human bone NSCLC metastasis biopsies for comparison. RESULTS: At 12 weeks after bone implant, we observed osteogenic activity and neovascularization, confirming bone vitality. Tumor aggressive cells implanted close to human bone invaded the bone tissue. The bone-aggressive cancer cells were positive for IL-7 staining both in the mice model and in human biopsies. Higher IL-7 serum levels were found in mice injected with A549 cells close to the bone implant compared to mice injected with A549 cells in the flank opposite to the bone implant. CONCLUSIONS: We demonstrated that bone-invading cells express and produce IL-7, which is known to promote osteoclast activation and osteolytic lesions. Tumor-bone interaction increases IL-7 production, with an increase in IL-7 serum levels. The presented mice model of bone invasion by contiguous tumor is suitable to study bone-tumor cell interaction. IL-7 plays a role in the first steps of metastatic process.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Interleucina-7/biossíntese , Neoplasias Pulmonares/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Interleucina-7/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica
17.
Cytotechnology ; 72(1): 37-45, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31728801

RESUMO

Bone marrow derived mesenchymal stromal cells (BMSCs) are multipotent progenitors of particular interest for cell-based tissue engineering therapies. However, one disadvantage that limit their clinical use is their heterogeneity. In the last decades a great effort was made to select BMSC subpopulations based on cell surface markers, however there is still no general consensus on which markers to use to obtain the best BMSCs for tissue regeneration. Looking for alternatives we decided to focus on a probe-based method to detect intracellular mRNA in living cells, the SmartFlare technology. This technology does not require fixation of the cells and allows us to sort living cells based on gene expression into functionally different populations. However, since the technology is available it is debated whether the probes specifically recognize their target mRNAs. We validated the TWIST1 probe and demonstrated that it specifically recognizes TWIST1 in BMSCs. However, differences in probe concentration, incubation time and cellular uptake can strongly influence signal specificity. In addition we found that TWIST1high expressing cells have an increased expansion rate compared to TWIST1low expressing cells derived from the same initial population of BMSCs. The SmartFlare probes recognize their target gene, however for each probe and cell type validation of the protocol is necessary.

18.
Int J Artif Organs ; 32(11): 811-20, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20020413

RESUMO

PURPOSE: Surface properties of titanium alloys, used for orthopedic and dental applications, are known to affect implant interactions with host tissues. Osteointegration, bone growth and remodeling in the area surrounding the implants can be implemented by specific biomimetic treatments; these allow the preparation of micro/nanostructured titanium surfaces with a thickened oxide layer, doped with calcium and phosphorus ions. We have challenged these experimental titanium alloys with primary human bone marrow stromal cells to compare the osteogenic differentiation outcomes of the cells once they are seeded onto the modified surfaces, thus simulating a prosthetic device-biological interface of clinical relevance. METHODS: A specific anodic spark discharge was the biomimetic treatment of choice, providing experimental titanium disks treated with different alkali etching approaches. The disks, checked by electron microscopy and spectroscopy, were subsequently used as substrates for the proliferation and osteogenic differentiation of human cells. Expression of markers of the osteogenic lineage was assessed by means of qualitative and quantitative PCR, by cytochemistry, immunohistochemistry, Western blot and matrix metalloprotease activity analyses. RESULTS: Metal surfaces were initially less permissive for cell growth. Untreated control substrates were less efficient in sustaining mineralized matrix deposition upon osteogenic induction of the cells. Interestingly, bone sialo protein and matrix metalloprotease 2 levels were enhanced on experimental metals compared to control surfaces, particularly for titanium oxide coatings etched with KOH. DISCUSSION: As a whole, the KOH-modification of titanium surfaces seems to allow the best osteogenic differentiation of human mesenchymal stromal cells, representing a possible plus for future clinical prosthetic applications.


Assuntos
Ligas/química , Células da Medula Óssea/fisiologia , Diferenciação Celular , Implantes Dentários , Equipamentos Ortopédicos , Osteogênese , Células Estromais/fisiologia , Titânio/química , Adolescente , Adulto , Biomarcadores/metabolismo , Western Blotting , Células da Medula Óssea/metabolismo , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Criança , Planejamento de Prótese Dentária , Matriz Extracelular/metabolismo , Feminino , Humanos , Hidróxidos/química , Imuno-Histoquímica , Cinética , Masculino , Microscopia Eletrônica de Varredura , Osseointegração , Osteogênese/genética , Reação em Cadeia da Polimerase , Compostos de Potássio/química , RNA Mensageiro/metabolismo , Hidróxido de Sódio/química , Células Estromais/metabolismo , Propriedades de Superfície , Adulto Jovem
19.
J Appl Biomater Biomech ; 7(1): 1-12, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20740433

RESUMO

Technological improvements in biology, medicine, chemistry, engineering and material science have allowed deeper insights into the architectural and molecular organization levels of tissues and materials, providing innovative approaches and tools for medical treatments. One of the therapeutic targets that may benefit from these new issues is damaged human articular cartilage, a tissue unable to self-heal. In this review, we have not taken into consideration the pathological degenerations that may cause cartilage damage, but we have concentrated on the means of repair, providing a brief overview of the consolidated cellbased approaches for cartilage resurfacing. However, we have also focused on the tight relationships between chondrocytes and their surrounding extracellular matrix. The aim was to evidence the requirements of the cell components of the tissue, the un-fulfillment of which may cause unsatisfactory therapeutic outcomes in present therapies. A deeper analysis of the structural microand nano-characteristics of the articular cartilage matrix is presented to motivate the most recent "nano-approaches" that have been developed and published in the literature. Nanofiber technology, material surface topography and bioactivation, and recent advances in nanoparticle modifications are thus considered for their interesting contributions aimed at improving tissue engineering-based cartilage repair.

20.
J Cell Biochem ; 104(4): 1393-406, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18286508

RESUMO

Studying cartilage differentiation, we observed the emergence of inflammation-related proteins suggesting that a common pathway was activated in cartilage differentiation and inflammation. In the present paper, we investigated the expression pathway of the inflammation-related enzyme Cyclooxygenase-2 (COX-2) during differentiation and inflammatory response of the chondrocytic cell line MC615. Cells were cultured either as (i) proliferating prechondrogenic cells expressing type I collagen or (ii) differentiated hyperconfluent cells expressing Sox9 and type II collagen. The p38 and the NF-kB pathways were investigated in standard conditions and after inflammatory agents treatment. NF-kB was constitutively activated in differentiated cells. The activation level of NF-kB in differentiated cells was comparable to the level in proliferating cells treated with the inflammatory agent LPS. In both cases, p65 was bound to the NF-kB consensus sequence of COX-2 promoter. p38, constitutively activated in differentiated cells, was activated in proliferating cells by treatment with LPS or IL-1alpha. In stimulated proliferating cells the two pathways are connected since addition of the p38-specific inhibitor SB203580 inhibited p38 activation, significantly reduced NF-kB activation and repressed COX-2 synthesis indicating that p38 is upstream NF-kB activation and COX-2 synthesis. In differentiated cells, the treatment with the inflammatory agent neither enhance NF-kB activation, nor synthesis of COX-2 while the addition of SB203580 neither repressed activation of p38, nor COX-2 synthesis, suggesting a constitutive activation of a p38/NF-kB/COX2 pathway. Our data indicate that in chondrocytes, COX-2 is expressed via p38 activation/NF-kB recruitment during both differentiation and inflammatory response.


Assuntos
Diferenciação Celular , Condrócitos/patologia , Ciclo-Oxigenase 2/genética , Regulação da Expressão Gênica/fisiologia , Inflamação/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Biópsia , Linhagem Celular , Condrócitos/metabolismo , Humanos , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA