Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
RNA ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981655

RESUMO

T-box riboswitches are widespread bacterial regulatory noncoding RNAs that directly interact with tRNAs and switch conformations to regulate the transcription or translation of genes related to amino acid metabolism. Recent studies in Bacilli have revealed the core mechanisms of T-boxes that enable multivalent, specific recognition of both the identity and aminoacylation status of the tRNA substrates. However, in-depth knowledge of a vast number of T-boxes in other bacterial species remains scarce, although a remarkable structural diversity particularly among pathogens, is apparent. In the present study, analysis of T-boxes that control the transcription of glycyl-tRNA synthetases from four prominent human pathogens revealed significant structural idiosyncrasies. Nonetheless, these diverse T-boxes maintain functional T-box:tRNAGly interactions both in vitro and in vivo. Probing analysis not only validated recent structural observations but also expanded our knowledge on the substantial diversities among T-boxes and suggest interesting distinctions from the canonical Bacilli T-boxes. Surprisingly, some glycyl T-boxes seem to redirect the T-box trajectory in the absence of recognizable K-turns or contain Stem II modules that are generally absent in glycyl T-boxes. These results consolidate the notion of lineage-specific diversification and elaboration of the T-box mechanism and corroborate the potential of T-boxes as promising species-specific RNA targets for next-generation antibacterial compounds.

2.
Nucleic Acids Res ; 50(10): 5834-5849, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580054

RESUMO

T-box riboswitches (T-boxes) are essential RNA regulatory elements with a remarkable structural diversity, especially among bacterial pathogens. In staphylococci, all glyS T-boxes synchronize glycine supply during synthesis of nascent polypeptides and cell wall formation and are characterized by a conserved and unique insertion in their antiterminator/terminator domain, termed stem Sa. Interestingly, in Staphylococcus aureus the stem Sa can accommodate binding of specific antibiotics, which in turn induce robust and diverse effects on T-box-mediated transcription. In the present study, domain swap mutagenesis and probing analysis were performed to decipher the role of stem Sa. Deletion of stem Sa significantly reduces both the S. aureus glyS T-box-mediated transcription readthrough levels and the ability to discriminate among tRNAGly isoacceptors, both in vitro and in vivo. Moreover, the deletion inverted the previously reported stimulatory effects of specific antibiotics. Interestingly, stem Sa insertion in the terminator/antiterminator domain of Geobacillus kaustophilus glyS T-box, which lacks this domain, resulted in elevated transcription in the presence of tigecycline and facilitated discrimination among proteinogenic and nonproteinogenic tRNAGly isoacceptors. Overall, stem Sa represents a lineage-specific structural feature required for efficient staphylococcal glyS T-box-mediated transcription and it could serve as a species-selective druggable target through its ability to modulate antibiotic binding.


Assuntos
Riboswitch , Antibacterianos/farmacologia , RNA , RNA de Transferência de Glicina/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
3.
Int J Mol Sci ; 21(24)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419375

RESUMO

Ribosomal RNA (rRNA) biogenesis takes place in the nucleolus, the most prominent condensate of the eukaryotic nucleus. The proper assembly and integrity of the nucleolus reflects the accurate synthesis and processing of rRNAs which in turn, as major components of ribosomes, ensure the uninterrupted flow of the genetic information during translation. Therefore, the abundant production of rRNAs in a precisely functional nucleolus is of outmost importance for the cell viability and requires the concerted action of essential enzymes, associated factors and epigenetic marks. The coordination and regulation of such an elaborate process depends on not only protein factors, but also on numerous regulatory non-coding RNAs (ncRNAs). Herein, we focus on RNA-mediated mechanisms that control the synthesis, processing and modification of rRNAs in mammals. We highlight the significance of regulatory ncRNAs in rRNA biogenesis and the maintenance of the nucleolar morphology, as well as their role in human diseases and as novel druggable molecular targets.


Assuntos
Nucléolo Celular/genética , RNA Ribossômico/biossíntese , RNA não Traduzido/genética , Ribossomos/genética , Regulação da Expressão Gênica/genética , Humanos , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico/genética , Proteínas Ribossômicas/genética
4.
Antibiotics (Basel) ; 11(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36140022

RESUMO

Riboswitches are structured non-coding RNAs found in the 5' UTR of important genes for bacterial metabolism, virulence and survival. Upon the binding of specific ligands that can vary from simple ions to complex molecules such as nucleotides and tRNAs, riboswitches change their local and global mRNA conformations to affect downstream transcription or translation. Due to their dynamic nature and central regulatory role in bacterial metabolism, riboswitches have been exploited as novel RNA-based targets for the development of new generation antibacterials that can overcome drug-resistance problems. During recent years, several important riboswitch structures from many bacterial representatives, including several prominent human pathogens, have shown that riboswitches are ideal RNA targets for new compounds that can interfere with their structure and function, exhibiting much reduced resistance over time. Most interestingly, mainstream antibiotics that target the ribosome have been shown to effectively modulate the regulatory behavior and capacity of several riboswitches, both in vivo and in vitro, emphasizing the need for more in-depth studies and biological evaluation of new antibiotics. Herein, we summarize the currently known compounds that target several main riboswitches and discuss the role of mainstream antibiotics as modulators of T-box riboswitches, in the dawn of an era of novel inhibitors that target important bacterial regulatory RNAs.

5.
Nat Struct Mol Biol ; 26(12): 1094-1105, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740854

RESUMO

Amino acid availability in Gram-positive bacteria is monitored by T-box riboswitches. T-boxes directly bind tRNAs, assess their aminoacylation state, and regulate the transcription or translation of downstream genes to maintain nutritional homeostasis. Here, we report cocrystal and cryo-EM structures of Geobacillus kaustophilus and Bacillus subtilis T-box-tRNA complexes, detailing their multivalent, exquisitely selective interactions. The T-box forms a U-shaped molecular vise that clamps the tRNA, captures its 3' end using an elaborate 'discriminator' structure, and interrogates its aminoacylation state using a steric filter fashioned from a wobble base pair. In the absence of aminoacylation, T-boxes clutch tRNAs and form a continuously stacked central spine, permitting transcriptional readthrough or translation initiation. A modeled aminoacyl disrupts tRNA-T-box stacking, severing the central spine and blocking gene expression. Our data establish a universal mechanism of amino acid sensing on tRNAs and gene regulation by T-box riboswitches and exemplify how higher-order RNA-RNA interactions achieve multivalency and specificity.


Assuntos
Aminoácidos/metabolismo , Bacillus subtilis/metabolismo , Geobacillus/metabolismo , RNA Bacteriano/metabolismo , RNA de Transferência/metabolismo , Riboswitch , Aminoacilação , Bacillus subtilis/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Geobacillus/química , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/ultraestrutura , RNA de Transferência/química , RNA de Transferência/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA