Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 100: 18-27, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33279030

RESUMO

This work describes the development, optimisation and validation of an analytical method for the rapid determination of 17 priority pharmaceutical compounds and endocrine disrupting chemicals (EDCs). Rather than studying compounds from the same therapeutic class, the analyses aimed to determine target compounds with the highest risk potential (with particular regard to Scotland), providing a tool for further monitoring in different water matrices. Prioritisation was based on a systematic environmental risk assessment approach, using consumption data; wastewater treatment removal efficiency; environmental occurrence; toxicological effects; and pre-existing regulatory indicators. This process highlighted 17 compounds across various therapeutic classes, which were then quantified, at environmentally relevant concentrations, by a single analytical methodology. Analytical determination was achieved using a single-step solid phase extraction (SPE) procedure followed by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The fully optimised method performed well for the majority of target compounds, with recoveries >71% for 15 of 17 analytes. The limits of quantification for most target analytes (14 of 17) ranged from 0.07 ng/L to 1.88 ng/L in river waters. The utility of this method was then demonstrated using real water samples associated with a rural hospital/setting. Eight compounds were targeted and detected, with the highest levels found for the analgesic, paracetamol (at up to 105,910 ng/L in the hospital discharge). This method offers a robust tool to monitor high priority pharmaceutical and EDC levels in various aqueous sample matrices.


Assuntos
Disruptores Endócrinos , Preparações Farmacêuticas , Poluentes Químicos da Água , Cromatografia Líquida de Alta Pressão , Disruptores Endócrinos/análise , Monitoramento Ambiental , Água Doce , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
2.
J Transl Med ; 17(1): 128, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30995929

RESUMO

BACKGROUND: Cell based therapies, such as bone marrow derived mesenchymal stem cells (BM-MSCs; also known as mesenchymal stromal cells), are currently under investigation for a number of disease applications. The current challenge facing the field is maintaining the consistency and quality of cells especially for cell dose production for pre-clinical testing and clinical trials. Here we determine how BM-donor variability and thus the derived MSCs factor into selection of the optimal primary cell lineage for cell production and testing in a pre-clinical swine model of trauma induced acute respiratory distress syndrome. METHODS: We harvested bone marrow and generated three different primary BM-MSCs from Yorkshire swine. Cells from these three donors were characterized based on (a) phenotype (morphology, differentiation capacity and flow cytometry), (b) in vitro growth kinetics and metabolic activity, and (c) functional analysis based on inhibition of lung endothelial cell permeability. RESULTS: Cells from each swine donor exhibited varied morphology, growth rate, and doubling times. All expressed the same magnitude of standard MSC cell surface markers by flow cytometry and had similar differentiation potential. Metabolic activity and growth potential at each of the passages varied between the three primary cell cultures. More importantly, the functional potency of the MSCs on inhibition of endothelial permeability was also cell donor dependent. CONCLUSION: This study suggests that for production of MSCs for cell-based therapy, it is imperative to examine donor variability and characterize derived MSCs for marker expression, growth and differentiation characteristics and testing potency in application dependent assays prior to selection of the optimal cell lineage for large scale expansion and dose production.


Assuntos
Células da Medula Óssea/citologia , Seleção do Doador , Células-Tronco Mesenquimais/citologia , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Forma Celular , Meios de Cultivo Condicionados/farmacologia , Impedância Elétrica , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Humanos , Imunofenotipagem , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Suínos
3.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28053103

RESUMO

A subset of HIV-infected individuals termed elite controllers (ECs) maintain CD4+ T cell counts and control viral replication in the absence of antiretroviral therapy (ART). Systemic cytokine responses may differentiate ECs from subjects with uncontrolled viral replication or from those who require ART to suppress viral replication. We measured 87 cytokines in four groups of women: 73 ECs, 42 with pharmacologically suppressed viremia (ART), 42 with uncontrolled viral replication (noncontrollers [NCs]), and 48 HIV-uninfected (NEG) subjects. Four cytokines were elevated in ECs but not NCs or ART subjects: CCL14, CCL21, CCL27, and XCL1. In addition, median stromal cell-derived factor-1 (SDF-1) levels were 43% higher in ECs than in NCs. The combination of the five cytokines suppressed R5 and X4 virus replication in resting CD4+ T cells, and individually SDF-1ß, CCL14, and CCL27 suppressed R5 virus replication, while SDF-1ß, CCL21, and CCL14 suppressed X4 virus replication. Functional studies revealed that the combination of the five cytokines upregulated CD69 and CCR5 and downregulated CXCR4 and CCR7 on CD4+ T cells. The CD69 and CXCR4 effects were driven by SDF-1, while CCL21 downregulated CCR7. The combination of the EC-associated cytokines induced expression of the anti-HIV host restriction factors IFITM1 and IFITM2 and suppressed expression of RNase L and SAMHD1. These results identify a set of cytokines that are elevated in ECs and define their effects on cellular activation, HIV coreceptor expression, and innate restriction factor expression. This cytokine pattern may be a signature characteristic of HIV-1 elite control, potentially important for HIV therapeutic and curative strategies.IMPORTANCE Approximately 1% of people infected with HIV control virus replication without taking antiviral medications. These subjects, termed elite controllers (ECs), are known to have stronger immune responses targeting HIV than the typical HIV-infected subject, but the exact mechanisms of how their immune responses control infection are not known. In this study, we identified five soluble immune signaling molecules (cytokines) in the blood that were higher in ECs than in subjects with typical chronic HIV infection. We demonstrated that these cytokines can activate CD4+ T cells, the target cells for HIV infection. Furthermore, these five EC-associated cytokines could change expression levels of intrinsic resistance factors, or molecules inside the target cell that fight HIV infection. This study is significant in that it identified cytokines elevated in subjects with a good immune response against HIV and defined potential mechanisms as to how these cytokines could induce resistance to the virus in target cells.


Assuntos
Citocinas/metabolismo , Infecções por HIV/imunologia , HIV/imunologia , HIV/fisiologia , Replicação Viral/efeitos dos fármacos , Adulto , Antígenos de Diferenciação/biossíntese , Linfócitos T CD4-Positivos/virologia , Feminino , Regulação da Expressão Gênica , Sobreviventes de Longo Prazo ao HIV , Humanos , Proteínas de Membrana/biossíntese , Pessoa de Meia-Idade , Plasma/química , Receptores de HIV/biossíntese
4.
Stem Cells ; 34(5): 1263-72, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26840479

RESUMO

Intravenous administration of bone marrow derived mesenchymal stem cells (MSCs) has been shown to reduce blood brain barrier compromise and improve neurocognition following traumatic brain injury (TBI). These effects occur in the absence of engraftment and differentiation of these cells in the injured brain. Recent studies have shown that soluble factors produced by MSCs mediate a number of the therapeutic effects. In this study, we sought to determine if intravenous administration of MSCs (IV-MSCs) could enhance hippocampal neurogenesis following TBI. Our results demonstrate that IV-MSC treatment attenuates loss of neural stem cells and promotes hippocampal neurogenesis in TBI injured mice. As Wnt signaling has been implicated in neurogenesis, we measured circulating Wnt3a levels in serum following IV-MSC administration and found a significant increase in Wnt3a. Concurrent with this increase, we detected increased activation of the Wnt/ß-catenin signaling pathway in hippocampal neurons. Furthermore, IV recombinant Wnt3a treatment provided neuroprotection, promoted neurogenesis, and improved neurocognitive function in TBI injured mice. Taken together, our results demonstrate a role for Wnt3a in the therapeutic potential of MSCs and identify Wnt3a as a potential stand-alone therapy or as part of a combination therapeutic strategy for the treatment of TBI. Stem Cells 2016;34:1263-1272.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Cognição , Células-Tronco Mesenquimais/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Recuperação de Função Fisiológica , Proteína Wnt3A/metabolismo , Proteína Wnt3A/uso terapêutico , Administração Intravenosa , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Sobrevivência Celular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Pulmão/metabolismo , Transplante de Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Resultado do Tratamento , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A/sangue , Proteína Wnt3A/farmacologia
5.
Stem Cells ; 33(12): 3530-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26299440

RESUMO

Mesenchymal stem cells (MSCs) have been shown to have potent therapeutic effects in a number of disorders including traumatic brain injury (TBI). However, the molecular mechanism(s) underlying these protective effects are largely unknown. Herein we demonstrate that tissue inhibitor of matrix metalloproteinase-3 (TIMP3), a soluble protein released by MSCs, is neuroprotective and enhances neuronal survival and neurite outgrowth in vitro. In vivo in a murine model of TBI, intravenous recombinant TIMP3 enhances dendritic outgrowth and abrogates loss of hippocampal neural stem cells and mature neurons. Mechanistically we demonstrate in vitro and in vivo that TIMP3-mediated neuroprotection is critically dependent on activation of the Akt-mTORC1 pathway. In support of the neuroprotective effect of TIMP3, we find that intravenous delivery of recombinant TIMP3 attenuates deficits in hippocampal-dependent neurocognition. Taken together, our data strongly suggest that TIMP3 has direct neuroprotective effects that can mitigate the deleterious effects associated with TBI, an area with few if any therapeutic options.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Transtornos Cognitivos/tratamento farmacológico , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Inibidor Tecidual de Metaloproteinase-3/farmacologia , Animais , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Hipocampo/patologia , Camundongos , Células-Tronco Neurais/patologia , Neurônios/patologia
6.
Transfusion ; 56 Suppl 1: S65-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27001364

RESUMO

BACKGROUND: In current blood banking practices, platelets (PLTs) are stored in plasma at 22°C, with gentle agitation for up to 5 days. To date, the effects of storage and donor variability on PLT regulation of vascular integrity are not known. STUDY DESIGN AND METHODS: In this study, we examined the donor variability of leukoreduced fresh (Day 1) or stored (Day 5) PLTs on vascular endothelial barrier function in vitro and in vivo. In vitro, PLT effects on endothelial cell (EC) monolayer permeability were assessed by analyzing transendothelial electrical resistances (TEER). PLT aggregation, a measure of hemostatic potential, was analyzed by impedance aggregometry. In vivo, PLTs were investigated in a vascular endothelial growth factor A (VEGF-A)-induced vascular permeability model in NSG mice, and PLT circulation was measured by flow cytometry. RESULTS: Treatment of endothelial monolayers with fresh Day 1 PLTs resulted in an increase in EC barrier resistance and decreased permeability in a dose-dependent manner. Subsequent treatment of EC monolayers with Day 5 PLTs demonstrated diminished vasculoprotective effects. Donor variability was noted in all measures of PLT function. Day 1 PLT donors were more variable in their effects on TEER than Day 5 PLTs. In mice, while all PLTs regardless of storage time demonstrated significant protection against VEGF-A-induced vascular leakage, Day 5 PLTs exhibited reduced protection when compared to Day 1 PLTs. Day 1 PLTs demonstrated significant donor variability against VEGF-A-challenged vascular leakage in vivo. Systemic circulating levels of Day 1 PLTs were higher than those of Day 5 PLTs CONCLUSIONS: In vitro and in vivo, Day 1 PLTs are protective in measures of vascular endothelial permeability. Donor variability is most prominent in Day 1 PLTs. A decrease in the protective effects is found with storage of the PLT units between Day 1 and Day 5 at 22°C, thereby suggesting that Day 5 PLTs are diminished in their ability to attenuate vascular endothelial permeability.


Assuntos
Doadores de Sangue , Plaquetas/metabolismo , Preservação de Sangue , Células Endoteliais da Veia Umbilical Humana/metabolismo , Plaquetoferese , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD , Fatores de Tempo
7.
Transfusion ; 56 Suppl 1: S52-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27001362

RESUMO

BACKGROUND: Although a majority of the studies conducted to date on platelet (PLT) storage have been focused on PLT hemostatic function, the effects of 4°C PLTs on regulation of endothelial barrier permeability are still not known. In this study, we compared the effects of room temperature (22°C) stored and (4°C) stored PLTs on the regulation of vascular endothelial cell (EC) permeability in vitro and in vivo. STUDY DESIGN AND METHODS: Day 1, Day 5, and Day 7 leukoreduced apheresis PLTs stored at 4 or 22°C were studied in vitro and in vivo. In vitro, PLT effects on EC permeability and barrier function, adhesion, and impedance aggregometry were investigated. In vivo, using a mouse model of vascular leak, attenuation of vascular leak and circulating PLT numbers were measured. RESULTS: Treatment of EC monolayers with Day 5 or Day 7 PLTs, stored at both 22°C and 4°C, resulted in similar decreases in EC permeability on average. However, analysis of individual samples revealed significant variation that was donor dependent. Additional in vitro measurements revealed a decrease in inflammatory mediators, nonspecific PLT-endothelial aggregation and attenuated loss of aggregation over time to TRAP, ASPI, ADP, and collagen with 4°C storage. In mice, while 22°C and 4°C PLTs both demonstrated significant protection against vascular endothelial growth factor A (VEGF-A)-induced vascular leak 22°C PLTs exhibited increased protection compared to 4°C PLTs. Systemic circulating levels of 4°C PLTs were decreased compared to 22°C PLTs. CONCLUSIONS: In vitro, 4°C-stored PLTs exhibit a greater capacity to inhibit EC permeability than 22°C-stored PLTs. In vivo, 22°C PLTs provide superior control of vascular leak induced by VEGF-A. This discrepancy may be due to increased clearance of 4°C PLTs from the systemic circulation.


Assuntos
Plaquetas , Preservação de Sangue , Permeabilidade Capilar , Temperatura Baixa , Endotélio Vascular/metabolismo , Temperatura Alta , Células Endoteliais da Veia Umbilical Humana/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fatores de Tempo
8.
Chemosphere ; 359: 142205, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704050

RESUMO

The presence of arsenic in groundwater, and through this in drinking water, has been shown to present a serious risk to public health in many regions of the world. In this study, two iron-rich carbonous adsorbents were compared for the removal of arsenate (As(V)) from groundwater. Biochars (FeO-biochar and FeO-pyrochar) derived from biomass waste were functionalised in two different ways with iron chloride for comparation. Batch and dynamic parameters were optimised to achieve >99% As(V) removal efficiency. Experimental data were best described by the pseudo-second order kinetic model, while multi-stage diffusion appeared to limit mass transfer of As(V). Among the isotherm models evaluated, the Freundlich model best described the experimental results with high correlation coefficients (R2 ≥ 0.94) for both adsorbents. Monolayer adsorption capacities were found to be 4.34 mg/g and 8.66 mg/g for FeO-biochar and FeO-pyrochar, respectively. Batch studies followed by instrumental characterisation of the materials indicated the removal mechanisms involved to be electrostatic interactions (outer-sphere), OH- ligand exchange (inner-sphere complexation) and hydrogen bonding with functional groups. Higher pHpzc (9.1), SBET (167.2 m2/g), and iron/elemental content for the FeO-pyrochar (compared with the FeO-biochar) suggested that both surface chemistry and porosity/surface area were important in adsorption. Dynamic studies showed FeO-pyrochar can be used to remove As(V) from groundwater even at low 'environmental' concentrations relevant to legislative limits (<10 µg/L), whereby 7 g of FeO-pyrochar was able to treat 5.4 L groundwater.


Assuntos
Arseniatos , Carvão Vegetal , Água Subterrânea , Ferro , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arseniatos/química , Água Subterrânea/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Carvão Vegetal/química , Ferro/química , Cinética , Carbono/química
9.
J Neurosci ; 32(43): 15124-32, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23100433

RESUMO

We found previously that acute ex vivo as well as repeated cycles of in vivo ethanol exposure and withdrawal, including excessive voluntary consumption of ethanol, produces a long-lasting increase in the activity of NR2B-containing NMDA receptors (NR2B-NMDARs) in the dorsomedial striatum (DMS) of rats (Wang et al., 2010a). Activation of NMDARs is required for the induction of long-term potentiation (LTP) of AMPA receptor (AMPAR)-mediated synaptic response. We therefore examined whether the ethanol-mediated upregulation of NMDAR activity alters the induction of LTP in the DMS. We found that ex vivo acute exposure of striatal slices to, and withdrawal from, ethanol facilitates the induction of LTP in DMS neurons, which is abolished by the inhibition of NR2B-NMDARs. We also report that repeated systemic administration of ethanol causes an NR2B-NMDAR-dependent facilitation of LTP in the DMS. LTP is mediated by the insertion of AMPAR subunits into the synaptic membrane, and we found that repeated systemic administration of ethanol, as well as cycles of excessive ethanol consumption and withdrawal, produced a long-lasting increase in synaptic localization of the GluR1 and GluR2 subunits of AMPARs in the DMS. Importantly, we report that inhibition of AMPARs in the DMS attenuates operant self-administration of ethanol, but not of sucrose. Together, our data suggest that aberrant synaptic plasticity in the DMS induced by repeated cycles of ethanol exposure and withdrawal contributes to the molecular mechanisms underlying the development and/or maintenance of excessive ethanol consumption.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Corpo Estriado/efeitos dos fármacos , Etanol/farmacologia , Receptores de AMPA/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Corpo Estriado/citologia , Antagonistas de Dopamina/farmacologia , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Autoadministração , Sacarose/administração & dosagem , Sulpirida/farmacologia , Edulcorantes/administração & dosagem , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Regulação para Cima/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
10.
Alcohol Clin Exp Res ; 37(10): 1680-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23763790

RESUMO

BACKGROUND: Corticotropin releasing factor (CRF) and urocortin play an important role in many stress responses and also can regulate ethanol (EtOH) intake. Adaptations in CRF signaling in the central amygdala promote EtOH consumption after long-term EtOH intake in dependent animals and also after brief periods of binge EtOH intake. Thus, even brief episodes of EtOH consumption can alter the function of the CRF system, allowing CRF to regulate EtOH intake. Here, we examined whether brief binge EtOH consumption leads to CRF receptor adaptations within the ventral tegmental area (VTA), a structure involved in signaling rewarding and aversive events and important in the development and expression of drug and alcohol addiction. METHODS: We utilized a mouse model of binge drinking known as drinking in the dark (DID), where C57BL/6J mice drink approximately 6 g/kg in 4 hours and achieve blood EtOH concentrations of approximately 100 mg/dl, which is equivalent to binge drinking in humans. We used ex vivo whole-cell recordings from putative VTA dopamine (DA) neurons to examine CRF regulation of NMDA receptor (NMDAR) currents. We also examined the impact of CRF receptor antagonist injection in the VTA on binge EtOH intake. RESULTS: Ex vivo whole-cell recordings from putative VTA DA neurons showed enhanced CRF-mediated potentiation of NMDAR currents in juvenile mice that consumed EtOH in the DID procedure. CRF-induced potentiation of NMDAR currents in EtOH-drinking mice was blocked by administration of CP-154,526 (3 µM), a selective CRF1 receptor antagonist. Furthermore, intra-VTA infusion of CP-154,526 (1 µg) significantly reduced binge EtOH consumption in adult mice. These results were not due to alterations of VTA NMDAR number or function, suggesting that binge drinking may enhance signaling through VTA CRF1 receptors onto NMDARs. CONCLUSIONS: Altered CRF1 receptor-mediated signaling in the VTA promotes binge-like EtOH consumption in mice, which supports the idea that CRF1 receptors may therefore be a promising pharmacological target for reducing binge drinking in humans.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Escuridão , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos
11.
Water Res ; 228(Pt B): 119369, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36434975

RESUMO

Eutrophication and the predicted limited future availability of rock phosphate has triggered the increased development of phosphorus (P) recovery technologies, however, for remote regions, recovery solutions are still limited. Here, we report on a novel pilot-scale technology (FILTRAFLOTM-P reactor) to recover phosphate (PO43-) from wastewater effluent through a filtration/adsorption process in a rural setting. This unit employs enhanced gravitational filtration through adsorption media (here, a novel KOH deacetylated crab carapace based chitosan-calcite material (CCM)) with continuous self-backwashing. Trials were designed to assess how the FILTRAFLOTM-P unit would operate under 'real' conditions (both at low and high PO43- levels), and to ascertain the effectiveness of the adsorbent to recover phosphate from final effluent. High removal was achieved at low phosphate concentrations, bringing the residual effluent PO43- level below 1 mg/L (EU limit for sensitive water bodies), while phosphate was efficiently harvested (at more than 50%) at higher PO43- levels. Surface microprecipitation and inner-sphere complexation were postulated as the main PO43- adsorption mechanisms through XRD, XPS and EDX elemental mapping. Further, a quality assessment of the P-enriched CCM (which could be used as a potential soil amendment) was undertaken to consider elemental composition, microbiological assessment and quantification of organic micropollutants. Quality analysis indicated ∼2.5% P2O5 present, trace levels (well below legislative limits) of heavy metals and extremely low levels of organic pollutants (e.g., PCBs, pharmaceuticals). No detectable levels of target bacterial pathogens were observed. Pot trials showed that ryegrass cultivated with the addition of the CCM adsorbent achieved higher plant dry matter and P concentration when compared to unfertilised controls, with a slow-release kinetic pattern. This study showed that CCM used with the FILTRAFLOTM-P pilot reactor has high potential to recover phosphate from effluents and encourage resource recovery via bio-based management of waste.


Assuntos
Quitosana , Fosfatos , Fertilizantes , Águas Residuárias , Fósforo , Carbonato de Cálcio
12.
Bio Protoc ; 13(24): e4900, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38156031

RESUMO

Streamlined procedures for processing and cryopreservation of cell therapies using good laboratory practices are integral to biomanufacturing process development and clinical applications. The protocol herein begins with the preparation of human cell types cultured as adherent (i.e., mesenchymal stromal cells, MSCs) or suspension cells (i.e., peripheral blood mononuclear cells, PBMCs) to comprehensively demonstrate procedures that are applicable to commonly used primary cell cultures. Cell processing steps consist of preparing high yields of cells for cryopreservation using instruments routinely used in cell manufacturing, including the Finia® Fill and Finish System and a controlled-rate freezer. The final steps comprise the storage of cells at subzero temperatures in liquid nitrogen vapor phase followed by the analysis of cell phenotypes before and after processing and cryopreservation, along with cell quality metrics for validation. Additionally, the protocol includes important considerations for the implementation of quality control measures for equipment operation and cell handling, as well as Good Laboratory Practices for cell manufacturing, which are essential for the translational use of cell therapies. Key features • The protocol applies to small- or large-scale manufacturing of cell therapy products. • It includes streamlined procedures for processing and cryopreservation of cells cultured as adherent cells (MSCs) and suspension cells (PBMCs). • Provides temperature control and rapid partitioning of sample in cryopreservation solution to maintain high viability of a range of cell types throughout the procedures. • This protocol employs the Finia® Fill and Finish System and a controlled-rate freezer. Graphical overview.

13.
J Neurosci ; 31(6): 2180-7, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21307254

RESUMO

We report here that the Src family tyrosine kinase Lyn negatively regulates the release of dopamine (DA) in the mesolimbic system, as well as the rewarding properties of alcohol. Specifically, we show that RNA interference-mediated knockdown of Lyn expression results in an increase in KCl-induced DA release in DAergic-like SH-SY5Y cells, whereas overexpression of a constitutively active form of Lyn (CA-Lyn) leads to a decrease of DA release. Activation of ventral tegmental area (VTA) DAergic neurons results in DA overflow in the nucleus accumbens (NAc), and we found that the evoked release of DA was higher in the NAc of Lyn knock-out (Lyn KO) mice compared with wild-type littermate (Lyn WT) controls. Acute exposure of rodents to alcohol causes a rapid increase in DA release in the NAc, and we show that overexpression of CA-Lyn in the VTA of mice blocked alcohol-induced (2 g/kg) DA release in the NAc. Increase in DA levels in the NAc is closely associated with reward-related behaviors, and overexpression of CA-Lyn in the VTA of mice led to an attenuation of alcohol reward, measured in a conditioned place preference paradigm. Conversely, alcohol place preference was increased in Lyn KO mice compared with Lyn WT controls. Together, our results suggest a novel role for Lyn kinase in the regulation of DA release in the mesolimbic system, which leads to the control of alcohol reward.


Assuntos
Condicionamento Operante/fisiologia , Dopamina/metabolismo , Regulação da Expressão Gênica/fisiologia , Núcleo Accumbens/metabolismo , Área Tegmentar Ventral/metabolismo , Quinases da Família src/metabolismo , Animais , Comportamento Animal , Linhagem Celular , Depressores do Sistema Nervoso Central/farmacologia , Condicionamento Operante/efeitos dos fármacos , Eletroquímica/métodos , Inibidores Enzimáticos/farmacologia , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise , Núcleo Accumbens/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Pirimidinas/farmacologia , Interferência de RNA/fisiologia , Estatísticas não Paramétricas , Transfecção/métodos , Trítio/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Quinases da Família src/deficiência , Quinases da Família src/genética
14.
Environ Pollut ; 292(Pt A): 118295, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626711

RESUMO

Pharmaceuticals (a class of emerging contaminants) are continuously introduced into effluent-receiving surface waters due to their incomplete removal within wastewater treatment plants (WWTPs). This work investigated the presence and distribution of eight commonly used human pharmaceuticals in the River Dee (Scotland, UK), a Scottish Environment Protection Agency priority catchment that is a conservation site and important raw water source. Grab sampling and passive sampling (Polar Organic Chemical Integrative Sampler, POCIS) was performed over 12 months, targeting: paracetamol, ibuprofen, and diclofenac (analgesics/anti-inflammatories); clarithromycin and trimethoprim (antibiotics); carbamazepine and fluoxetine (psychoactive drugs); and 17α-ethynylestradiol (estrogen hormone). Sampling sites spanned from the river's rural source to the heavily urbanised estuary into the North Sea. Ibuprofen (ranging 0.8-697 ng/L), paracetamol (ranging 4-658 ng/L), trimethoprim (ranging 3-505 ng/L), diclofenac (ranging 2-324 ng/L) and carbamazepine (ranging 1-222 ng/L) were consistently detected at the highest concentrations through grab sampling, with concentrations generally increasing down river with increasing urbanisation. However, POCIS revealed trace contamination of most compounds throughout the river (commonly <0.5 ng/L), indicating pollution may be related to diffuse sources. Analysis of river flows revealed that low flow and warm seasons corresponded to statistically significantly higher concentrations of diclofenac and carbamazepine, two compounds of environmental and regulatory concern. Below the largest WWTP, annual average fluxes ranged 0.1 kg/yr (clarithromycin) to 143.8 kg/yr (paracetamol), with 226.2 kg/yr for total target compounds. It was estimated that this source contributed >70% of the total mass loads (dissolved phase) of the target compounds in the river. As the River Dee is an important raw water source and conservation site, additional catchment monitoring is warranted to safeguard water quality and assess environmental risk of emerging contaminants, particularly in relation to unusual weather patterns, climate change and population growth.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Rios , Escócia , Águas Residuárias/análise , Poluentes Químicos da Água/análise
15.
Sci Total Environ ; 814: 152794, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34982996

RESUMO

Shell from the seafood processing industry is an under-utilised waste resource worldwide. Calcite, the major component of shell is commonly used in wastewater treatment for the removal of phosphorus (P). Here, mussel and oyster shell-based adsorbents (MSB and OSB) were used for removal of P as phosphate (PO43-) from aqueous solution and secondary wastewater, following preparation through chemical calcination at 700 °C. Batch adsorption experiments were carried out to identify the effects of various operating parameters (e.g., pH, dosage, contact time, initial concentration of P ions, co-existing ions), while a desorption study helped to understand the availability of the bonded P. The optimal contact time for PO43- removal was 120 min using both adsorbents with the dose at 200 mg. Characterisation of the adsorbent was performed using SEM-EDX, pHpzc, BET, FTIR and XRD. The XRD analysis showed that both calcite and lime were present on the surface of the shell particles. P was adsorbed effectively through inner-sphere complexation and surface microprecipitation mechanisms, while an enhanced maximum P adsorption capacity of 12.44 mg/g for MSB and 8.25 mg/g for OSB was reached. The Redlich-Peterson isotherm model fitted well with the equilibrium isotherm data (R2 ≥ 0.97) which also suggested a heterogenic surface. The desorption study (on the saturated adsorbent) found that ~97% of bonded P could be plant available in soil. These results suggest that a shell-based adsorbent can serve as a promising material for P removal from real wastewater effluent and subsequently could be used as a soil conditioner.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Fosfatos , Águas Residuárias , Poluentes Químicos da Água/análise
16.
J Neurosci ; 30(30): 10187-98, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20668202

RESUMO

A growing number of studies suggest that the development of compulsive drug seeking and taking depends on dorsostriatal mechanisms. We previously observed that ex vivo acute exposure of the dorsal striatum to, and withdrawal from, alcohol induces long-term facilitation (LTF) of the activity of NR2B-containing NMDA receptors (NR2B-NMDARs) in a mechanism that requires the Src family protein tyrosine kinase (PTK), Fyn (Wang et al., 2007). In the present study, we first compared alcohol's actions in rat dorsomedial (DMS) and the dorsolateral (DLS) subregions of the striatum, which differ in their anatomical connectivity and function. We found that alcohol-mediated induction of LTF of NR2B-NMDAR activity is centered in the DMS. Next, we tested whether in vivo exposure of rats to alcohol leads to long-term adaptations of the NMDAR system in the DMS. We observed that repeated daily administration of alcohol results in a long-lasting increase in the activity of the NR2B-NMDARs in the DMS. The same procedure leads to a prolonged activation of Fyn, increased NR2B phosphorylation, and membrane localization of the subunit. Importantly, similar electrophysiological and biochemical modifications were observed in the DMS of rats that consumed large quantities of alcohol. Finally, we show that inhibition of NR2B-NMDARs or Src family PTKs in the DMS, but not in the DLS, significantly decreases operant self-administration of alcohol and reduces alcohol-priming-induced reinstatement of alcohol seeking. Our results suggest that the upregulation of NR2B-NMDAR activity within the DMS by alcohol contributes to the maladaptive synaptic changes that lead to excessive alcohol intake and relapse.


Assuntos
Adaptação Fisiológica , Consumo de Bebidas Alcoólicas/patologia , Corpo Estriado/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Consumo de Bebidas Alcoólicas/sangue , Consumo de Bebidas Alcoólicas/psicologia , Análise de Variância , Animais , Comportamento Animal , Depressores do Sistema Nervoso Central/administração & dosagem , Depressores do Sistema Nervoso Central/efeitos adversos , Depressores do Sistema Nervoso Central/sangue , Comportamento de Escolha , Condicionamento Operante/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Etanol/administração & dosagem , Etanol/efeitos adversos , Etanol/sangue , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Imunoprecipitação/métodos , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Fenóis/farmacologia , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Recidiva , Autoadministração/métodos , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Sinaptossomos/metabolismo
17.
J Neurochem ; 119(4): 879-89, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21919909

RESUMO

In vivo exposure of rodents to ethanol leads to a long-lasting increase in Fyn kinase activity in the dorsomedial striatum (DMS). In this study, we set out to identify a molecular mechanism that contributes to the enhancement of Fyn activity in response to ethanol in the DMS. Protein tyrosine phosphatase α (PTPα) positively regulates the activity of Fyn, and we found that repeated systemic administration or binge drinking of ethanol results in an increase in the synaptic localization of PTPα in the DMS, the same site where Fyn resides. We also demonstrate that binge drinking of ethanol leads to an increase in Fyn activity and to the co-localization of Fyn and PTPα in lipid rafts in the DMS. Finally, we show that the level of tyrosine phosphorylated (and thus active) PTPα in the synaptic fractions is increased in response to contingent or non-contingent exposure of rats to ethanol. Together, our results suggest that the redistribution of PTPα in the DMS into compartments where Fyn resides is a potential mechanism by which the activity of the kinase is increased upon ethanol exposure. Such neuroadaptations could be part of a mechanism that leads to the development of excessive ethanol consumption.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/ultraestrutura , Etanol/farmacologia , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Animais , Proteína de Ligação a CREB/metabolismo , Condicionamento Operante/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large , Relação Dose-Resposta a Droga , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Comportamento de Ingestão de Líquido/fisiologia , Esquema de Medicação , Ativação Enzimática/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/enzimologia , Proteínas de Membrana/metabolismo , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley
18.
Water Res ; 173: 115573, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32035277

RESUMO

Phosphorous (P) recovery from wastewater will become increasingly vital in the future as terrestrial rock phosphate deposits are expended. Effective management of P as a critical resource will require new techniques to recover P from wastewater, ideally in a form that can be used in agriculture as fertiliser. In this study, batch and fixed-bed column conditions were tested using a novel KOH deacetylated calcite-chitosan based adsorbent (CCM) for P removal from aqueous solutions and wastewater effluents. The unique characteristics of this adsorbent as a phosphate adsorbent were the result of rich surface functionality (amine and sulphur functional groups of the chitosan and proteins) and the CaCO3 content (providing donor ligands; and additionally beneficial if the material were used as fertiliser, buffering soil acidification caused by nitrogen application). The maximum P adsorption capacity was determined to be 21.36 mgP/g (at 22 °C) and the endodermic process reached equilibrium after 120 min. The experimental data was best described using a Langmuir isotherm and a pseudo-second order kinetic model. The diffusion kinetic analysis highlighted the importance of both film and intraparticle mass-transport. Material characterisation suggested that the adsorption process involved interactions between P and functional groups (mostly -NH3+) due to electrostatic interaction on the chitosan chain or involved ligand exchange with CO32-. Analysis of materials using X-Ray Powder Diffraction (XRPD) and Thermogravimetric Analysis (TGA) indicated a microprecipitation-type mechanism may occur through the formation of hydroxylapatite (Ca5(PO4)3(OH)). Desorption studies demonstrated that the P-laden CCM (derived from crab carapace) had the potential to be reused in soil amendment as a slow-release P fertiliser. The effects of different operating parameters were explored in a fixed-bed column, and the experimental data fitted well to the Clark model (R2 = 0.99). The CCM also showed excellent P adsorption potential from secondary and final wastewater effluent in dynamic conditions, even at low P concentrations. Finally, a scale-up approach with cost analysis was used to evaluate the price and parameters needed for a potential large-scale P recovery system using this adsorbent.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Carbonato de Cálcio , Cinética , Fosfatos , Águas Residuárias
19.
Sci Total Environ ; 737: 139618, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32534267

RESUMO

It is widely recognised that inadequate removal of pharmaceuticals in wastewater may lead to their presence in surface waters. Hospitals are key point-sources for pharmaceuticals entering municipal waterways, and rural hospitals are of concern as receiving wastewater treatment plants (WWTPs) may be smaller, less advanced and thus less efficient. While most research has focused on urban settings, here we present results from a rural ''source-to-sink'' study around a hospital. The aim was to determine the contribution of pharmaceuticals discharged to a municipal wastewater system, and, to assess pharmaceutical removal efficiency in the WWTP. Samples were collected daily for one month to assess water quality and pharmaceuticals in the broader water cycle: (i) raw water supply; (ii) treated hospital tap water; (iii) hospital wastewater discharge; (iv) combined WWTP influent; and (v) final WWTP effluent. Target compounds included analgesics/antiinflammatories, antibiotics, psychiatric drugs, and a synthetic estrogen hormone. Concentrations ranged from: 3 ng/L (carbamazepine) to 105,910 ng/L (paracetamol) in hospital discharge; 5 ng/L (ibuprofen) to 105,780 ng/L (paracetamol) in WWTP influent; and 60 ng/L (clarithromycin) to 36,201 ng/L (paracetamol) in WWTP effluent. WWTP removal ranged from 87% (paracetamol) to <0% (carbamazepine and clarithromycin), and significant correlations with water quality characteristics and WWTP flow data were observed for some compounds. Results suggested that the hospital is an important source of certain pharmaceuticals entering municipal wastewater, and associated water quality parameters are impacted. Pharmaceutical persistence in the WWTP effluent highlighted the direct pathway these compounds have into receiving surface water, where their impact remains uncharacterised. Rural regions may face future challenges mitigating environmental risk as WWTP infrastructure ages, populations grow and pharmaceutical use and diversity continue to increase.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Qualidade da Água , Abastecimento de Água
20.
Water Res ; 179: 115828, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32446619

RESUMO

This letter is in response to the comments of Dr Hu and Dr Zhang on "Low-cost chitosan-calcite adsorbent development for potential phosphate removal and recovery from wastewater effluent" (Pap et al., 2020). We thank Dr Hu and Dr Zhang for their interest and comments, and having reflected, we wish to provide some clarification.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carbonato de Cálcio , Concentração de Íons de Hidrogênio , Cinética , Fosfatos , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA