Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mov Disord ; 36(5): 1250-1258, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33497488

RESUMO

BACKGROUND: Parkinson's disease (PD) is a genetically complex neurodegenerative disease with ~20 genes known to contain mutations that cause PD or atypical parkinsonism. Large-scale next-generation sequencing projects have revolutionized genomics research. Applying these data to PD, many genes have been reported to contain putative disease-causing mutations. In most instances, however, the results remain quite limited and rather preliminary. Our aim was to assist researchers on their search for PD-risk genes and variant candidates with an easily accessible and open summary-level genomic data browser for the PD research community. METHODS: Sequencing and imputed genotype data were obtained from multiple sources and harmonized and aggregated. RESULTS: In total we included a total of 102,127 participants, including 28,453 PD cases, 1650 proxy cases, and 72,024 controls. CONCLUSIONS: We present here the Parkinson's Disease Sequencing Browser: a Shiny-based web application that presents comprehensive summary-level frequency data from multiple large-scale genotyping and sequencing projects https://pdgenetics.shinyapps.io/VariantBrowser/. Published © 2021 This article is a U.S. Government work and is in the public domain in the USA. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Transtornos Parkinsonianos , DNA , Humanos , Mutação/genética , Doença de Parkinson/genética
2.
Mov Disord ; 34(4): 460-468, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30675927

RESUMO

BACKGROUND: PD is a complex polygenic disorder. In recent years, several genes from the endocytic membrane-trafficking pathway have been suggested to contribute to disease etiology. However, a systematic analysis of pathway-specific genetic risk factors is yet to be performed. OBJECTIVES: To comprehensively study the role of the endocytic membrane-trafficking pathway in the risk of PD. METHODS: Linkage disequilibrium score regression was used to estimate PD heritability explained by 252 genes involved in the endocytic membrane-trafficking pathway including genome-wide association studies data from 18,869 cases and 22,452 controls. We used pathway-specific single-nucleotide polymorphisms to construct a polygenic risk score reflecting the cumulative risk of common variants. To prioritize genes for follow-up functional studies, summary-data based Mendelian randomization analyses were applied to explore possible functional genomic associations with expression or methylation quantitative trait loci. RESULTS: The heritability estimate attributed to endocytic membrane-trafficking pathway was 3.58% (standard error = 1.17). Excluding previously nominated PD endocytic membrane-trafficking pathway genes, the missing heritability was 2.21% (standard error = 0.42). Random heritability simulations were estimated to be 1.44% (standard deviation = 0.54), indicating that the unbiased total heritability explained by the endocytic membrane-trafficking pathway was 2.14%. Polygenic risk score based on endocytic membrane-trafficking pathway showed a 1.25 times increase of PD risk per standard deviation of genetic risk. Finally, Mendelian randomization identified 11 endocytic membrane-trafficking pathway genes showing functional consequence associated to PD risk. CONCLUSIONS: We provide compelling genetic evidence that the endocytic membrane-trafficking pathway plays a relevant role in disease etiology. Further research on this pathway is warranted given that critical effort should be made to identify potential avenues within this biological process suitable for therapeutic interventions. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Endocitose/fisiologia , Doença de Parkinson/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Doença de Parkinson/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores de Risco
3.
Mol Syst Biol ; 5: 304, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19756043

RESUMO

Here we propose a simple statistical algorithm for rapidly scoring loci associated with disease or traits due to recessive mutations or deletions using genome-wide single nucleotide polymorphism genotyping case-control data in unrelated individuals. This algorithm identifies loci by defining homozygous segments of the genome present at significantly different frequencies between cases and controls. We found that false positive loci could be effectively removed from the output of this procedure by applying different physical size thresholds for the homozygous segments. This procedure is then conducted iteratively using random sub-datasets until the number of selected loci converges. We demonstrate this method in a publicly available data set for Alzheimer's disease and identify 26 candidate risk loci in the 22 autosomes. In this data set, these loci can explain 75% of the genetic risk variability of the disease.


Assuntos
Algoritmos , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Biologia de Sistemas/métodos , Predisposição Genética para Doença , Genoma Humano , Humanos , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único
4.
JAMA Neurol ; 70(1): 78-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23318515

RESUMO

OBJECTIVE: To identify new genes and risk factors associated with frontotemporal dementia (FTD). Several genes and loci have been associated with different forms of FTD, but a large number of families with dementia do not harbor mutations in these genes. DESIGN: Whole-exome sequencing and whole-genome genotyping were performed in all patients. Genetic variants obtained from whole-exome sequencing were integrated with the data obtained from whole-genome genotyping. SETTING: Database of the Behavioral Neurology Outpatient Clinic of the Department of Neurology, Istanbul Faculty of Medicine, Istanbul, Turkey. PATIENTS Forty-four Turkish patients with an FTD-like clinical diagnosis were included in the study. Relatives were screened when appropriate. MAIN OUTCOME MEASURE: Mutations in the triggering receptor expressed on myeloid cells 2 gene (TREM2). RESULTS: In 3 probands with FTD-like disease, we identified different homozygous mutations in TREM2 that had previously been associated with polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL). None of these 3 patients had a typical clinical presentation of PLOSL: they presented with behavioral change and subsequent cognitive impairment and motor features but without any bone cysts or bone-associated phenotypes. Imaging showed white matter abnormalities as well as frontal atrophy in all 3 patients. CONCLUSIONS: Our results show that TREM2 is responsible for an unexpectedly high number of dementia cases in our cohort, suggesting that this gene should be taken into account when mutations in other dementia genes are excluded. Even for complex syndromes such as dementia, exome sequencing has proven to be a rapid and cost-effective tool to identify genetic mutations, allowing for the association of clinical phenotypes with unexpected molecular underpinnings.


Assuntos
Exoma/genética , Demência Frontotemporal/genética , Glicoproteínas de Membrana/genética , Mutação/genética , Receptores Imunológicos/genética , Adulto , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Humanos , Masculino , Fatores de Risco , Síndrome
5.
Neurobiol Aging ; 33(5): 1008.e17-23, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22153900

RESUMO

Alzheimer's disease (AD) is a genetically complex disorder for which the definite diagnosis is only accomplished postmortem. Mutations in 3 genes (APP, PSEN1, and PSEN2) are known to cause AD, but a large number of familial cases do not harbor mutations in these genes and several unidentified genes that contain disease-causing mutations are thought to exist. We performed whole exome sequencing in a Turkish patient clinically diagnosed with Alzheimer's disease from a consanguineous family with a complex history of neurological and immunological disorders and identified a mutation in NOTCH3 (p.R1231C), previously described as causing cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Complete screening of NOTCH3 in a cohort of 95 early onset AD cases and 95 controls did not reveal any additional pathogenic mutations. Although the complex history of disease in this family precluded us to establish segregation of the mutation found with disease, our results show that exome sequencing is a rapid, cost-effective and comprehensive tool to detect genetic mutations, allowing for the identification of unexpected genetic causes of clinical phenotypes. As etiological based therapeutics become more common, this method will be key in diagnosing and treating disease.


Assuntos
Doença de Alzheimer/genética , Exoma/genética , Receptores Notch/genética , Análise de Sequência de DNA , Adulto , Idoso , Idoso de 80 Anos ou mais , Saúde da Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Mutação Puntual/genética , Receptor Notch3 , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA