Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(38): 14194-14205, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37698276

RESUMO

Electrifying the global economy is accepted as a main decarbonization lever to reach the Paris Agreement targets. The IEA's 2050 Net Zero transition pathways all involve some degree of nuclear power, highlighting its potential as a low-carbon electricity source. Greenhouse gas emissions of nuclear power reported in the life cycle assessment literature vary widely, from a few grams of CO2 equivalents to more than 100 g/kWh, globally. The reasons for such a variation are often misunderstood when reported and used by policymakers. To fill this gap, one can make LCA models explicit, exploring the role of the most significant parameters, and develop simplified models for the scientific community, policymakers, and the public. We developed a parametric cradle-to-grave life cycle model with 20 potentially significant variables: ore grade, extraction technique, enrichment technique, and power plant construction requirements, among others. Average GHG emissions of global nuclear power in 2020 are found to be 6.1 g CO2 equiv/kWh, whereas pessimistic and optimistic scenarios provide extreme values of 5.4-122 g CO2 equiv/kWh. We also provide simplified models, one per environmental impact indicator, which can be used to estimate environmental impacts of electricity generated by a pressurized water reactor without running the full-scale model.


Assuntos
Dióxido de Carbono , Centrais Elétricas , Animais , Carbono , Eletricidade , Estágios do Ciclo de Vida
2.
Proc Natl Acad Sci U S A ; 112(20): 6277-82, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25288741

RESUMO

Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.


Assuntos
Fontes de Energia Elétrica/economia , Poluentes Ambientais/economia , Aquecimento Global/prevenção & controle , Modelos Econômicos , Energia Renovável , Dióxido de Carbono/química , Cobre/química , Humanos , Ferro/química
3.
Environ Sci Technol ; 49(18): 11218-26, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26308384

RESUMO

Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.


Assuntos
Mudança Climática , Tecnologia , Eletricidade , Modelos Teóricos
4.
Environ Sci Technol ; 48(16): 9834-43, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-24984196

RESUMO

Thin-film photovoltaic (PV) technologies have improved significantly recently, and similar improvements are projected into the future, warranting reevaluation of the environmental implications of PV to update and inform policy decisions. By conducting a hybrid life cycle assessment using the most recent manufacturing data and technology roadmaps, we compare present and projected environmental, human health, and natural resource implications of electricity generated from two common thin-film PV technologies-copper indium gallium selenide (CIGS) and cadmium telluride (CdTe)-in the United States (U.S.) to those of the current U.S. electricity mix. We evaluate how the impacts of thin films can be reduced by likely cost-reducing technological changes: (1) module efficiency increases, (2) module dematerialization, (3) changes in upstream energy and materials production, and (4) end-of-life recycling of balance of system (BOS). Results show comparable environmental and resource impacts for CdTe and CIGS. Compared to the U.S. electricity mix in 2010, both perform at least 90% better in 7 of 12 and at least 50% better in 3 of 12 impact categories, with comparable land use, and increased metal depletion unless BOS recycling is ensured. Technological changes, particularly efficiency increases, contribute to 35-80% reductions in all impacts by 2030.


Assuntos
Conservação dos Recursos Naturais , Eletricidade , Fontes Geradoras de Energia , Meio Ambiente , Gases/análise , Efeito Estufa , Compostos de Cádmio/química , Carcinógenos/análise , Mudança Climática , Gálio/química , Metais/análise , Selênio/química , Telúrio/química , Incerteza , Estados Unidos
5.
Nat Commun ; 10(1): 5229, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745077

RESUMO

A rapid and deep decarbonization of power supply worldwide is required to limit global warming to well below 2 °C. Beyond greenhouse gas emissions, the power sector is also responsible for numerous other environmental impacts. Here we combine scenarios from integrated assessment models with a forward-looking life-cycle assessment to explore how alternative technology choices in power sector decarbonization pathways compare in terms of non-climate environmental impacts at the system level. While all decarbonization pathways yield major environmental co-benefits, we find that the scale of co-benefits as well as profiles of adverse side-effects depend strongly on technology choice. Mitigation scenarios focusing on wind and solar power are more effective in reducing human health impacts compared to those with low renewable energy, while inducing a more pronounced shift away from fossil and toward mineral resource depletion. Conversely, non-climate ecosystem damages are highly uncertain but tend to increase, chiefly due to land requirements for bioenergy.


Assuntos
Poluição do Ar/prevenção & controle , Dióxido de Carbono/antagonistas & inibidores , Ecossistema , Gases de Efeito Estufa/antagonistas & inibidores , Energia Renovável , Poluição do Ar/análise , Dióxido de Carbono/análise , Fontes de Energia Elétrica , Aquecimento Global , Efeito Estufa , Gases de Efeito Estufa/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA