Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 210(10): 1607-1619, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027017

RESUMO

Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5' RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5' RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by commonly used methods, while additionally resolving H chain gene features not documented in IMGT at the time of submission. FLAIRR-seq data provide, for the first time, to our knowledge, simultaneous single-molecule characterization of IGHV, IGHD, IGHJ, and IGHC region genes and alleles, allele-resolved subisotype definition, and high-resolution identification of class switch recombination within a clonal lineage. In conjunction with genomic sequencing and genotyping of IGHC genes, FLAIRR-seq of the IgM and IgG repertoires from 10 individuals resulted in the identification of 32 unique IGHC alleles, 28 (87%) of which were previously uncharacterized. Together, these data demonstrate the capabilities of FLAIRR-seq to characterize IGHV, IGHD, IGHJ, and IGHC gene diversity for the most comprehensive view of bulk-expressed Ab repertoires to date.


Assuntos
Regiões Determinantes de Complementaridade , Humanos , Regiões Determinantes de Complementaridade/genética , Sequência de Bases
2.
Genes Immun ; 24(1): 21-31, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539592

RESUMO

Immunoglobulins (IGs), crucial components of the adaptive immune system, are encoded by three genomic loci. However, the complexity of the IG loci severely limits the effective use of short read sequencing, limiting our knowledge of population diversity in these loci. We leveraged existing long read whole-genome sequencing (WGS) data, fosmid technology, and IG targeted single-molecule, real-time (SMRT) long-read sequencing (IG-Cap) to create haplotype-resolved assemblies of the IG Lambda (IGL) locus from 6 ethnically diverse individuals. In addition, we generated 10 diploid assemblies of IGL from a diverse cohort of individuals utilizing IG-Cap. From these 16 individuals, we identified significant allelic diversity, including 36 novel IGLV alleles. In addition, we observed highly elevated single nucleotide variation (SNV) in IGLV genes relative to IGL intergenic and genomic background SNV density. By comparing SNV calls between our high quality assemblies and existing short read datasets from the same individuals, we show a high propensity for false-positives in the short read datasets. Finally, for the first time, we nucleotide-resolved common 5-10 Kb duplications in the IGLC region that contain functional IGLJ and IGLC genes. Together these data represent a significant advancement in our understanding of genetic variation and population diversity in the IGL locus.


Assuntos
Genes de Imunoglobulinas , Cadeias lambda de Imunoglobulina , Humanos , Cadeias lambda de Imunoglobulina/genética , Genômica , Variação Genética , Nucleotídeos
3.
Immunol Cell Biol ; 97(10): 888-901, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31441114

RESUMO

The genomes of classical inbred mouse strains include genes derived from all three major subspecies of the house mouse, Mus musculus. We recently posited that genetic diversity in the immunoglobulin heavy chain (IGH) gene loci of C57BL/6 and BALB/c mice reflects differences in subspecies origin. To investigate this hypothesis, we conducted high-throughput sequencing of IGH gene rearrangements to document IGH variable (IGHV), joining (IGHJ) and diversity (IGHD) genes in four inbred wild-derived mouse strains (CAST/EiJ, LEWES/EiJ, MSM/MsJ and PWD/PhJ) and a single disease model strain (NOD/ShiLtJ), collectively representing genetic backgrounds of several major mouse subspecies. A total of 341 germline IGHV sequences were inferred in the wild-derived strains, including 247 not curated in the international ImMunoGeneTics information system. By contrast, 83/84 inferred NOD IGHV genes had previously been observed in C57BL/6 mice. Variability among the strains examined was observed for only a single IGHJ gene, involving a description of a novel allele. By contrast, unexpected variation was found in the IGHD gene loci, with four previously unreported IGHD gene sequences being documented. Very few IGHV sequences of C57BL/6 and BALB/c mice were shared with strains representing major subspecies, suggesting that their IGH loci may be complex mosaics of genes of disparate origins. This suggests a similar level of diversity is likely present in the IGH loci of other classical inbred strains. This must now be documented if we are to properly understand interstrain variation in models of antibody-mediated disease.


Assuntos
Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Animais , Sequência de Bases , Bases de Dados Genéticas , Células Germinativas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
4.
Immunity ; 33(4): 607-19, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20888269

RESUMO

Mammalian noncoding microRNAs (miRNAs) are a class of gene regulators that have been linked to immune system function. Here, we have investigated the role of miR-155 during an autoimmune inflammatory disease. Consistent with a positive role for miR-155 in mediating inflammatory responses, Mir155(-/-) mice were highly resistant to experimental autoimmune encephalomyelitis (EAE). miR-155 functions in the hematopoietic compartment to promote the development of inflammatory T cells including the T helper 17 (Th17) cell and Th1 cell subsets. Furthermore, the major contribution of miR-155 to EAE was CD4(+) T cell intrinsic, whereas miR-155 was also required for optimum dendritic cell production of cytokines that promoted Th17 cell formation. Our study shows that one aspect of miR-155 function is the promotion of T cell-dependent tissue inflammation, suggesting that miR-155 might be a promising therapeutic target for the treatment of autoimmune disorders.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Encefalomielite Autoimune Experimental/etiologia , MicroRNAs/fisiologia , Animais , Células Cultivadas , Encefalomielite Autoimune Experimental/imunologia , Glicoproteínas/imunologia , Hipersensibilidade Tardia/imunologia , Interferon gama/fisiologia , Interleucina-17/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos/imunologia
5.
Cereb Cortex ; 27(3): 2183-2194, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27001680

RESUMO

Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) is an investigational therapy for treatment-resistant obsessive-compulsive disorder. The ability of VC/VS DBS to evoke spontaneous mirth in patients, often accompanied by smiling and laughter, is clinically well documented. However, the neural correlates of DBS-evoked mirth remain poorly characterized. Patients undergoing VC/VS DBS surgery underwent intraoperative evaluation in which mirth-inducing and non-mirth-inducing stimulation localizations were identified. Using dynamic causal modeling (DCM) for fMRI, the effect of mirth-inducing DBS on functional and effective connectivity among established nodes in limbic cortico-striato-thalamo-cortical (CSTC) circuitry was investigated. Both mirth-inducing and non-mirth-inducing VC/VS DBS consistently resulted (conjunction, global null, family-wise error-corrected P < 0.05) in activation of amygdala, ventral striatum, and mediodorsal thalamus. However, only mirth-inducing DBS resulted in functional inhibition of anterior cingulate cortex. Dynamic causal modeling revealed that mirth-inducing DBS enhanced effective connectivity from anterior cingulate to ventral striatum, while attenuating connectivity from thalamus to ventral striatum relative to non-mirth-inducing stimulation. These results suggest that DBS-evoked mood elevation is accompanied by distinct patterns of limbic thalamocortical connectivity. Using the novel combination of DBS-evoked mood alteration and functional MRI in human subjects, we provide new insights into the network-level mechanisms that influence affect.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda , Emoções , Adulto , Afeto , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Período Intraoperatório , Riso/fisiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Vias Neurais/cirurgia , Procedimentos Neurocirúrgicos , Oxigênio/sangue , Sorriso/fisiologia , Senso de Humor e Humor como Assunto , Adulto Jovem
6.
Hum Brain Mapp ; 38(6): 2808-2818, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28294456

RESUMO

Based on cytoarchitecture, the posterior cingulate cortex (PCC) is thought to be comprised of two distinct functional subregions: the dorsal and ventral PCC (dPCC and vPCC). However, functional subregions do not completely match anatomical boundaries in the human brain. To understand the relationship between the functional organization of regions and anatomical features, it is necessary to apply parcellation algorithms based on functional properties. We therefore defined functionally informed subregions in the human PCC by parcellation of regions with similar patterns of functional connectivity in the resting brain. We used various patterns of functional connectivity, namely local, whole-brain and diffuse functional connections of the PCC, and various clustering methods, namely hierarchical, spectral, and k-means clustering to investigate the subregions of the PCC. Overall, the approximate anatomical boundaries and predicted functional regions were highly overlapped to each other. Using hierarchical clustering, the PCC could be clearly separated into two anatomical subregions, namely the dPCC and vPCC, and further divided into four subregions segregated by local functional connectivity patterns. We show that the PCC could be separated into two (dPCC and vPCC) or four subregions based on local functional connections and hierarchical clustering, and that subregions of PCC display differential global functional connectivity, particularly along the dorsal-ventral axis. These results suggest that differences in functional connectivity between dPCC and vPCC may be due to differences in local connectivity between these functionally hierarchical subregions of the PCC. Hum Brain Mapp 38:2808-2818, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Giro do Cíngulo/anatomia & histologia , Giro do Cíngulo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Algoritmos , Análise por Conglomerados , Feminino , Lateralidade Funcional/fisiologia , Giro do Cíngulo/fisiologia , Humanos , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Adulto Jovem
7.
Brain ; 139(Pt 8): 2198-210, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27329768

RESUMO

Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson's disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identified in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain stimulation.media-1vid110.1093/brain/aww145_video_abstractaww145_video_abstract.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Neuroimagem Funcional/métodos , Avaliação de Resultados em Cuidados de Saúde , Parestesia/etiologia , Núcleos Ventrais do Tálamo , Idoso , Estimulação Encefálica Profunda/efeitos adversos , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória
8.
J Immunol ; 187(10): 5062-8, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22003200

RESUMO

MicroRNA (miR)-125b expression is modulated in macrophages in response to stimulatory cues. In this study, we report a functional role of miR-125b in macrophages. We found that miR-125b is enriched in macrophages compared with lymphoid cells and whole immune tissues. Enforced expression of miR-125b drives macrophages to adapt an activated morphology that is accompanied by increased costimulatory factor expression and elevated responsiveness to IFN-γ, whereas anti-miR-125b treatment decreases CD80 surface expression. To determine whether these alterations in cell signaling, gene expression, and morphology have functional consequences, we examined the ability of macrophages with enhanced miR-125b expression to present Ags and found that they better stimulate T cell activation than control macrophages. Further indicating increased function, these macrophages were more effective at killing EL4 tumor cells in vitro and in vivo. Moreover, miR-125b repressed IFN regulatory factor 4 (IRF4), and IRF4 knockdown in macrophages mimicked the miR-125b overexpression phenotype. In summary, our evidence suggests that miR-125b is at least partly responsible for generating the activated nature of macrophages, at least partially by reducing IRF4 levels, and potentiates the functional role of macrophages in inducing immune responses.


Assuntos
Ativação de Macrófagos/imunologia , MicroRNAs/fisiologia , Animais , Apresentação de Antígeno/imunologia , Sequência de Bases , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Testes Imunológicos de Citotoxicidade , Células HEK293 , Humanos , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/biossíntese , MicroRNAs/imunologia , Dados de Sequência Molecular , Baço/citologia , Baço/imunologia , Baço/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timo/citologia , Timo/imunologia , Timo/metabolismo
9.
Proc Natl Acad Sci U S A ; 107(32): 14235-40, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660734

RESUMO

The production of blood cells depends on a rare hematopoietic stem-cell (HSC) population, but the molecular mechanisms underlying HSC biology remain incompletely understood. Here, we identify a subset of microRNAs (miRNAs) that is enriched in HSCs compared with other bone-marrow cells. An in vivo gain-of-function screen found that three of these miRNAs conferred a competitive advantage to engrafting hematopoietic cells, whereas other HSC miRNAs attenuated production of blood cells. Overexpression of the most advantageous miRNA, miR-125b, caused a dose-dependent myeloproliferative disorder that progressed to a lethal myeloid leukemia in mice and also enhanced hematopoietic engraftment in human immune system mice. Our study identifies an evolutionarily conserved subset of miRNAs that is expressed in HSCs and functions to modulate hematopoietic output.


Assuntos
Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/química , Células-Tronco Hematopoéticas/efeitos dos fármacos , MicroRNAs/análise , MicroRNAs/farmacologia , Animais , Células da Medula Óssea , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide/etiologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/fisiologia , Transtornos Mieloproliferativos/induzido quimicamente , Transtornos Mieloproliferativos/patologia
10.
Nat Commun ; 14(1): 4419, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479682

RESUMO

Variation in the antibody response has been linked to differential outcomes in disease, and suboptimal vaccine and therapeutic responsiveness, the determinants of which have not been fully elucidated. Countering models that presume antibodies are generated largely by stochastic processes, we demonstrate that polymorphisms within the immunoglobulin heavy chain locus (IGH) impact the naive and antigen-experienced antibody repertoire, indicating that genetics predisposes individuals to mount qualitatively and quantitatively different antibody responses. We pair recently developed long-read genomic sequencing methods with antibody repertoire profiling to comprehensively resolve IGH genetic variation, including novel structural variants, single nucleotide variants, and genes and alleles. We show that IGH germline variants determine the presence and frequency of antibody genes in the expressed repertoire, including those enriched in functional elements linked to V(D)J recombination, and overlapping disease-associated variants. These results illuminate the power of leveraging IGH genetics to better understand the regulation, function, and dynamics of the antibody response in disease.


Assuntos
Genes de Cadeia Pesada de Imunoglobulina , Genes de Imunoglobulinas , Humanos , Genes de Cadeia Pesada de Imunoglobulina/genética , Alelos , Mutação em Linhagem Germinativa , Cadeias Pesadas de Imunoglobulinas/genética
11.
Front Immunol ; 14: 1330153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38406579

RESUMO

Introduction: Analysis of an individual's immunoglobulin (IG) gene repertoire requires the use of high-quality germline gene reference sets. When sets only contain alleles supported by strong evidence, AIRR sequencing (AIRR-seq) data analysis is more accurate and studies of the evolution of IG genes, their allelic variants and the expressed immune repertoire is therefore facilitated. Methods: The Adaptive Immune Receptor Repertoire Community (AIRR-C) IG Reference Sets have been developed by including only human IG heavy and light chain alleles that have been confirmed by evidence from multiple high-quality sources. To further improve AIRR-seq analysis, some alleles have been extended to deal with short 3' or 5' truncations that can lead them to be overlooked by alignment utilities. To avoid other challenges for analysis programs, exact paralogs (e.g. IGHV1-69*01 and IGHV1-69D*01) are only represented once in each set, though alternative sequence names are noted in accompanying metadata. Results and discussion: The Reference Sets include less than half the previously recognised IG alleles (e.g. just 198 IGHV sequences), and also include a number of novel alleles: 8 IGHV alleles, 2 IGKV alleles and 5 IGLV alleles. Despite their smaller sizes, erroneous calls were eliminated, and excellent coverage was achieved when a set of repertoires comprising over 4 million V(D)J rearrangements from 99 individuals were analyzed using the Sets. The version-tracked AIRR-C IG Reference Sets are freely available at the OGRDB website (https://ogrdb.airr-community.org/germline_sets/Human) and will be regularly updated to include newly observed and previously reported sequences that can be confirmed by new high-quality data.


Assuntos
Genes de Imunoglobulinas , Imunoglobulinas , Humanos , Imunoglobulinas/genética , Alelos , Recombinação V(D)J/genética , Células Germinativas
12.
Front Immunol ; 13: 888555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720344

RESUMO

The immunoglobulin genes of inbred mouse strains that are commonly used in models of antibody-mediated human diseases are poorly characterized. This compromises data analysis. To infer the immunoglobulin genes of BALB/c mice, we used long-read SMRT sequencing to amplify VDJ-C sequences from F1 (BALB/c x C57BL/6) hybrid animals. Strain variations were identified in the Ighm and Ighg2b genes, and analysis of VDJ rearrangements led to the inference of 278 germline IGHV alleles. 169 alleles are not present in the C57BL/6 genome reference sequence. To establish a set of expressed BALB/c IGHV germline gene sequences, we computationally retrieved IGHV haplotypes from the IgM dataset. Haplotyping led to the confirmation of 162 BALB/c IGHV gene sequences. A musIGHV398 pseudogene variant also appears to be present in the BALB/cByJ substrain, while a functional musIGHV398 gene is highly expressed in the BALB/cJ substrain. Only four of the BALB/c alleles were also observed in the C57BL/6 haplotype. The full set of inferred BALB/c sequences has been used to establish a BALB/c IGHV reference set, hosted at https://ogrdb.airr-community.org. We assessed whether assemblies from the Mouse Genome Project (MGP) are suitable for the determination of the genes of the IGH loci. Only 37 (43.5%) of the 85 confirmed IMGT-named BALB/c IGHV and 33 (42.9%) of the 77 confirmed non-IMGT IGHV were found in a search of the MGP BALB/cJ genome assembly. This suggests that current MGP assemblies are unsuitable for the comprehensive documentation of germline IGHVs and more efforts will be needed to establish strain-specific reference sets.


Assuntos
Cadeias Pesadas de Imunoglobulinas , Região Variável de Imunoglobulina , Animais , Haplótipos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Sequência de DNA
13.
J Neurosurg ; 135(6): 1771-1779, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990083

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established neurosurgical treatment for the motor symptoms of Parkinson's disease (PD). While often highly effective, DBS does not always yield optimal therapeutic outcomes, and stimulation-induced adverse effects, including paresthesia, muscle contractions, and nausea/lightheadedness, commonly occur and can limit the efficacy of stimulation. Currently, objective metrics do not exist for monitoring neural changes associated with stimulation-induced therapeutic and adverse effects. METHODS: In the present study, the authors combined intraoperative functional MRI (fMRI) with STN DBS in 20 patients with PD to test the hypothesis that stimulation-induced blood oxygen level-dependent signals contained predictive information concerning the therapeutic and adverse effects of stimulation. RESULTS: As expected, DBS resulted in blood oxygen level-dependent activation in myriad motor regions, including the primary motor cortex, caudate, putamen, thalamus, midbrain, and cerebellum. Across the patients, DBS-induced improvements in contralateral Unified Parkinson's Disease Rating Scale tremor subscores correlated with activation of thalamic, brainstem, and cerebellar regions. In addition, improvements in rigidity and bradykinesia subscores correlated with activation of the primary motor cortex. Finally, activation of specific sensorimotor-related subregions correlated with the presence of DBS-induced adverse effects, including paresthesia and nausea (cerebellar cortex, sensorimotor cortex) and unwanted muscle contractions (caudate and putamen). CONCLUSIONS: These results suggest that DBS-induced activation patterns revealed by fMRI contain predictive information with respect to the therapeutic and adverse effects of DBS. The use of fMRI in combination with DBS therefore may hold translational potential to guide and improve clinical stimulator optimization in patients.

14.
Front Immunol ; 11: 2136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072076

RESUMO

An incomplete ascertainment of genetic variation within the highly polymorphic immunoglobulin heavy chain locus (IGH) has hindered our ability to define genetic factors that influence antibody-mediated processes. Due to locus complexity, standard high-throughput approaches have failed to accurately and comprehensively capture IGH polymorphism. As a result, the locus has only been fully characterized two times, severely limiting our knowledge of human IGH diversity. Here, we combine targeted long-read sequencing with a novel bioinformatics tool, IGenotyper, to fully characterize IGH variation in a haplotype-specific manner. We apply this approach to eight human samples, including a haploid cell line and two mother-father-child trios, and demonstrate the ability to generate high-quality assemblies (>98% complete and >99% accurate), genotypes, and gene annotations, identifying 2 novel structural variants and 15 novel IGH alleles. We show multiplexing allows for scaling of the approach without impacting data quality, and that our genotype call sets are more accurate than short-read (>35% increase in true positives and >97% decrease in false-positives) and array/imputation-based datasets. This framework establishes a desperately needed foundation for leveraging IG genomic data to study population-level variation in antibody-mediated immunity, critical for bettering our understanding of disease risk, and responses to vaccines and therapeutics.


Assuntos
Biologia Computacional/métodos , Genes de Imunoglobulinas , Variação Genética , Técnicas de Genotipagem , Haplótipos/genética , Cadeias Pesadas de Imunoglobulinas/genética , Polimorfismo Genético , Linhagem Celular , Apresentação de Dados , Conjuntos de Dados como Assunto , Família , Biblioteca Gênica , Variação Estrutural do Genoma , Humanos , Anotação de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Interface Usuário-Computador , Fluxo de Trabalho
15.
Neuroimage Clin ; 18: 502-509, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29560306

RESUMO

Background and objectives: Deep brain stimulation (DBS) of the thalamus is a promising therapeutic alternative for treating medically refractory Tourette syndrome (TS). However, few human studies have examined its mechanism of action. Therefore, the networks that mediate the therapeutic effects of thalamic DBS remain poorly understood. Methods: Five participants diagnosed with severe medically refractory TS underwent bilateral thalamic DBS stereotactic surgery. Intraoperative fMRI characterized the blood oxygen level-dependent (BOLD) response evoked by thalamic DBS and determined whether the therapeutic effectiveness of thalamic DBS, as assessed using the Modified Rush Video Rating Scale test, would correlate with evoked BOLD responses in motor and limbic cortical and subcortical regions. Results: Our results reveal that thalamic stimulation in TS participants has wide-ranging effects that impact the frontostriatal, limbic, and motor networks. Thalamic stimulation induced suppression of motor and insula networks correlated with motor tic reduction, while suppression of frontal and parietal networks correlated with vocal tic reduction. These regions mapped closely to major regions of interest (ROI) identified in a nonhuman primate model of TS. Conclusions: Overall, these findings suggest that a critical factor in TS treatment should involve modulation of both frontostriatal and motor networks, rather than be treated as a focal disorder of the brain. Using the novel combination of DBS-evoked tic reduction and fMRI in human subjects, we provide new insights into the basal ganglia-cerebellar-thalamo-cortical network-level mechanisms that influence the effects of thalamic DBS. Future translational research should identify whether these network changes are cause or effect of TS symptoms.


Assuntos
Estimulação Encefálica Profunda/métodos , Vias Neurais/fisiologia , Tálamo/fisiologia , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/terapia , Adulto , Correlação de Dados , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Índice de Gravidade de Doença , Resultado do Tratamento , Adulto Jovem
16.
Brain Stimul ; 9(5): 770-773, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27160467

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the anterior thalamic nucleus (ATN) exerts its effects by modulating neural circuits involved in seizures. However, these networks remain incompletely characterized. OBJECTIVE: Investigate the effects of ATN DBS on network activity in a large animal model using 3-T fMRI. METHODS: Anesthetized swine underwent ATN DBS using stimulation parameters applied in the Stimulation of the Anterior Thalamus for the Treatment of Epilepsy (SANTE) trial. Stimulation amplitude, frequency, and temporal paradigm were varied and the resulting blood oxygen level-dependent signal was measured. RESULTS: ATN DBS resulted in activation within temporal, prefrontal, and sensorimotor cortex. An amplitude-dependent increase in cluster volume was observed at 60 Hz and 145 Hz stimulation. CONCLUSION: ATN DBS in swine induced parameter-dependent activation in cortical regions including but not limited to the Papez circuit. These findings may hold clinical implications for treatment of epilepsy in patients with temporal or extratemporal seizure foci.


Assuntos
Núcleos Anteriores do Tálamo/fisiologia , Estimulação Encefálica Profunda/métodos , Epilepsia/terapia , Sistema Límbico/fisiopatologia , Animais , Núcleos Anteriores do Tálamo/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Feminino , Sistema Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Suínos
17.
Neurosci Biobehav Rev ; 58: 186-210, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25684727

RESUMO

This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms.


Assuntos
Gânglios da Base/fisiologia , Estimulação Encefálica Profunda , Animais , Humanos
18.
Mayo Clin Proc ; 90(6): 773-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26046412

RESUMO

OBJECTIVE: To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease would affect the activity of motor and nonmotor networks, we applied intraoperative functional magnetic resonance imaging (fMRI) to patients receiving DBS. PATIENTS AND METHODS: Ten patients receiving STN DBS for Parkinson disease underwent intraoperative 1.5-T fMRI during high-frequency stimulation delivered via an external pulse generator. The study was conducted between January 1, 2013, and September 30, 2014. RESULTS: We observed blood oxygen level-dependent (BOLD) signal changes (false discovery rate <0.001) in the motor circuitry (including the primary motor, premotor, and supplementary motor cortices; thalamus; pedunculopontine nucleus; and cerebellum) and in the limbic circuitry (including the cingulate and insular cortices). Activation of the motor network was observed also after applying a Bonferroni correction (P<.001) to the data set, suggesting that across patients, BOLD changes in the motor circuitry are more consistent compared with those occurring in the nonmotor network. CONCLUSION: These findings support the modulatory role of STN DBS on the activity of motor and nonmotor networks and suggest complex mechanisms as the basis of the efficacy of this treatment modality. Furthermore, these results suggest that across patients, BOLD changes in the motor circuitry are more consistent than those in the nonmotor network. With further studies combining the use of real-time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01809613.


Assuntos
Estimulação Encefálica Profunda , Lobo Límbico/fisiopatologia , Atividade Motora/fisiologia , Córtex Motor/fisiopatologia , Doença de Parkinson/terapia , Núcleo Subtalâmico , Idoso , Feminino , Humanos , Lobo Límbico/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória , Córtex Motor/patologia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia
19.
Chem Phys Lipids ; 164(8): 740-58, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21945566

RESUMO

Circular Dichroism (CD), isothermal calorimetry (ITC) and calcein fluorescence leakage experiments were conducted to provide insight into the mechanisms of binding of a series of antimicrobial peptides containing unnatural amino acids (Ac-XF-Tic-Oic-XK-Tic-Oic-XF-Tic-Oic-XK-Tic-KKKK-CONH(2)) to zwitterionic and anionic micelles, SUVs and LUVs; where X (Spacer# 1) is either Gly, ß-Ala, Gaba or 6-aminohexanoic acid. It is the intent of this investigation to correlate these interactions with the observed potency and selectivity against several different strains of bacteria. The CD spectra of these compounds in the presence of zwitterionic DPC micelles and anionic SDS micelles are very different indicating that these compounds adopt different conformations on binding to the surface of anionic and zwitterionic membrane models. These compounds also exhibited very different CD spectra in the presence of zwitterionic POPC and anionic mixed 4:1 POPC/POPG SUVs and LUVs, indicating the formation of different conformations on interaction with the two membrane types. This observation is also supported by ITC and calcein leakage data. ITC data suggested these peptides interact primarily with the surface of zwitterionic LUVs and was further supported by fluorescence experiments where the interactions do not appear to be concentration dependent. In the presence of anionic membranes, the interactions appear more complex and the calorimetric and fluorescence data both imply pore formation is dependent on peptide concentration. Furthermore, evidence suggests that as the length of Spacer# 1 increases the mechanism of pore formation also changes. Based on the observed differences in the mechanisms of interactions with zwitterionic and anionic LUVs these AMPs are potential candidates for further drug development.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Membranas Artificiais , Aminoácidos , Lipossomos/química , Lipossomos/metabolismo , Micelas , Modelos Biológicos , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA