Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plant Cell ; 36(3): 642-664, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38016103

RESUMO

Many non-graminaceous species release various coumarins in response to iron (Fe) deficiency. However, the physiological relevance of these coumarins remains poorly understood. Here, we show that the three enzymes leading to sideretin biosynthesis co-exist in Arabidopsis (Arabidopsis thaliana) epidermal and cortical cells and that the shift to fraxetin at alkaline pH depends on MYB72-mediated repression of CYTOCHROME P450, FAMILY 82, SUBFAMILY C, POLYPEPTIDE 4 (CYP82C4). In vitro, only fraxetin and sideretin can reduce part of the Fe(III) that they mobilize. We demonstrate that coumarin-mediated Fe(III) reduction is critical under acidic conditions, as fraxetin and sideretin can complement the Fe(III)-chelate reductase mutant ferric reduction oxidase 2 (fro2), and disruption of coumarin biosynthesis in fro2 plants impairs Fe acquisition similar to in the Fe(II) uptake-deficient mutant iron-regulated transporter 1 (irt1). Disruption of sideretin biosynthesis in a fro2 cyp82C4-1 double mutant revealed that sideretin is the dominant chemical reductant that functions with FRO2 to mediate Fe(II) formation for root uptake. At alkaline pH, Fe(III) reduction by coumarins becomes almost negligible but fraxetin still sustains high Fe(III) mobilization, suggesting that its main function is to provide chelated Fe(III) for FRO2. Our study indicates that strategy-I plants link sideretin and fraxetin biosynthesis and secretion to external pH to recruit distinct coumarin chemical activities to maximize Fe acquisition according to prevailing soil pH conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Compostos Férricos/metabolismo , Ferro/metabolismo , Cumarínicos/metabolismo , Compostos Ferrosos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38243866

RESUMO

Vascular plants have segmented body axes with iterative nodes and internodes. Appropriate node initiation and internode elongation are fundamental to plant fitness and crop yield; however, how these events are spatiotemporally coordinated remains elusive. We show that in barley (Hordeum vulgare L.), selections during domestication have extended the apical meristematic phase to promote node initiation, but constrained subsequent internode elongation. In both vegetative and reproductive phases, internode elongation displays a dynamic proximal-distal gradient, and among subpopulations of domesticated barleys worldwide, node initiation and proximal internode elongation are associated with latitudinal and longitudinal gradients, respectively. Genetic and functional analyses suggest that, in addition to their converging roles in node initiation, flowering-time genes have been repurposed to specify the timing and duration of internode elongation. Our study provides an integrated view of barley node initiation and internode elongation and suggests that plant architecture should be recognized as a collection of dynamic phytomeric units in the context of crop adaptive evolution.


Assuntos
Adaptação Biológica , Hordeum , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Domesticação
3.
Plant Physiol ; 190(4): 2722-2738, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36124979

RESUMO

The combinatorial phosphorylation of myo-inositol results in the generation of different inositol phosphates (InsPs), of which phytic acid (InsP6) is the most abundant species in eukaryotes. InsP6 is also an important precursor of the higher phosphorylated inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8, which are characterized by a diphosphate moiety and are also ubiquitously found in eukaryotic cells. While PP-InsPs regulate various cellular processes in animals and yeast, their biosynthesis and functions in plants has remained largely elusive because plant genomes do not encode canonical InsP6 kinases. Recent work has shown that Arabidopsis (Arabidopsis thaliana) INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (ITPK1) and ITPK2 display in vitro InsP6 kinase activity and that, in planta, ITPK1 stimulates 5-InsP7 and InsP8 synthesis and regulates phosphate starvation responses. Here we report a critical role of ITPK1 in auxin-related processes that is independent of the ITPK1-controlled regulation of phosphate starvation responses. Those processes include primary root elongation, root hair development, leaf venation, thermomorphogenic and gravitropic responses, and sensitivity to exogenously applied auxin. We found that the recombinant auxin receptor complex, consisting of the F-Box protein TRANSPORT INHIBITOR RESPONSE1 (TIR1), ARABIDOPSIS SKP1 HOMOLOG 1 (ASK1), and the transcriptional repressor INDOLE-3-ACETIC ACID INDUCIBLE 7 (IAA7), binds to anionic inositol polyphosphates with high affinity. We further identified a physical interaction between ITPK1 and TIR1, suggesting a localized production of 5-InsP7, or another ITPK1-dependent InsP/PP-InsP isomer, to activate the auxin receptor complex. Finally, we demonstrate that ITPK1 and ITPK2 function redundantly to control auxin responses, as deduced from the auxin-insensitive phenotypes of itpk1 itpk2 double mutant plants. Our findings expand the mechanistic understanding of auxin perception and suggest that distinct inositol polyphosphates generated near auxin receptors help to fine-tune auxin sensitivity in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfotransferases (Aceptor do Grupo Álcool) , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos de Inositol/metabolismo , Plantas/metabolismo , Polifosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
4.
Biochemistry ; 61(12): 1213-1227, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35640071

RESUMO

Inositol pyrophosphates are signaling molecules containing at least one phosphoanhydride bond that regulate a wide range of cellular processes in eukaryotes. With a cyclic array of phosphate esters and diphosphate groups around myo-inositol, these molecular messengers possess the highest charge density found in nature. Recent work deciphering inositol pyrophosphate biosynthesis in Arabidopsis revealed important functions of these messengers in nutrient sensing, hormone signaling, and plant immunity. However, despite the rapid hydrolysis of these molecules in plant extracts, very little is known about the molecular identity of the phosphohydrolases that convert these messengers back to their inositol polyphosphate precursors. Here, we investigate whether Arabidopsis Plant and Fungi Atypical Dual Specificity Phosphatases (PFA-DSP1-5) catalyze inositol pyrophosphate phosphohydrolase activity. We find that recombinant proteins of all five Arabidopsis PFA-DSP homologues display phosphohydrolase activity with a high specificity for the 5-ß-phosphate of inositol pyrophosphates and only minor activity against the ß-phosphates of 4-InsP7 and 6-InsP7. We further show that heterologous expression of Arabidopsis PFA-DSP1-5 rescues wortmannin sensitivity and deranged inositol pyrophosphate homeostasis caused by the deficiency of the PFA-DSP-type inositol pyrophosphate phosphohydrolase Siw14 in yeast. Heterologous expression in Nicotiana benthamiana leaves provided evidence that Arabidopsis PFA-DSP1 also displays 5-ß-phosphate-specific inositol pyrophosphate phosphohydrolase activity in planta. Our findings lay the biochemical basis and provide the genetic tools to uncover the roles of inositol pyrophosphates in plant physiology and plant development.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Difosfatos/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatos de Inositol/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
J Exp Bot ; 73(6): 1751-1765, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34791130

RESUMO

The metals iron, zinc, manganese, copper, molybdenum, and nickel are essential for the growth and development of virtually all plant species. Although these elements are required at relatively low amounts, natural factors and anthropogenic activities can significantly affect their availability in soils, inducing deficiencies or toxicities in plants. Because essential trace metals can shape root systems and interfere with the uptake and signaling mechanisms of other nutrients, the non-optimal availability of any of them can induce multi-element changes in plants. Interference by one essential trace metal with the acquisition of another metal or a non-metal nutrient can occur prior to or during root uptake. Essential trace metals can also indirectly impact the plant's ability to capture soil nutrients by targeting distinct root developmental programs and hormone-related processes, consequently inducing largely metal-specific changes in root systems. The presence of metal binding domains in many regulatory proteins also enables essential trace metals to coordinate nutrient uptake by acting at high levels in hierarchical signaling cascades. Here, we summarize the known molecular and cellular mechanisms underlying trace metal-dependent modulation of nutrient acquisition and root development, and highlight the importance of considering multi-element interactions to breed crops better adapted to non-optimal trace metal availabilities.


Assuntos
Melhoramento Vegetal , Oligoelementos , Produtos Agrícolas/metabolismo , Metais/metabolismo , Solo
6.
Plant Cell Rep ; 41(2): 347-363, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797387

RESUMO

KEY MESSAGE: Selective Arabidopsis thaliana inositol phosphate kinase functions modulate response amplitudes in innate immunity by balancing signalling adjustments with phosphate homeostasis networks. Pyrophosphorylation of InsP6 generates InsP7 and/or InsP8 containing high-energy phosphoanhydride bonds that are harnessed during energy requirements of a cell. As bona fide co-factors for several phytohormone networks, InsP7/InsP8 modulate key developmental processes. With requirements in transducing jasmonic acid (JA) and phosphate-starvation responses (PSR), InsP8 exemplifies a versatile metabolite for crosstalks between different cellular pathways during diverse stress exposures. Here we show that Arabidopsis thaliana INOSITOL PENTAKISPHOSPHATE 2-KINASE 1 (IPK1), INOSITOL 1,3,4-TRISPHOSPHATE 5/6-KINASE 1 (ITPK1), and DIPHOSPHOINOSITOL PENTAKISPHOSPHATE KINASE 2 (VIH2) implicated in InsP8 biosynthesis, suppress salicylic acid (SA)-dependent immunity. In ipk1, itpk1 or vih2 mutants, constitutive activation of defenses lead to enhanced resistance against the Pseudomonas syringae pv tomato DC3000 (PstDC3000) strain. Our data reveal that upregulated SA-signaling sectors potentiate increased expression of several phosphate-starvation inducible (PSI)-genes, previously known in these mutants. In reciprocation, upregulated PSI-genes moderate expression amplitudes of defense-associated markers. We demonstrate that SA is induced in phosphate-deprived plants, however its defense-promoting functions are likely diverted to PSR-supportive roles. Overall, our investigations reveal selective InsPs as crosstalk mediators in defense-phosphate homeostasis and in reprogramming stress-appropriate response intensities.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfotransferases (Aceptor do Grupo Álcool) , Imunidade Vegetal , Ácido Salicílico , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/imunologia , Mutação , Fosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/imunologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plant Physiol ; 183(3): 998-1010, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32398320

RESUMO

Root developmental plasticity enables plants to adapt to limiting or fluctuating nutrient conditions in the soil. When grown under nitrogen (N) deficiency, plants develop a more exploratory root system by increasing primary and lateral root length. However, mechanisms underlying this so-called foraging response remain poorly understood. We performed a genome-wide association study in Arabidopsis (Arabidopsis thaliana) and we show here that noncoding variations of the brassinosteroid (BR) biosynthesis gene DWARF1 (DWF1) lead to variation of the DWF1 transcript level that contributes to natural variation of root elongation under low N. In addition to DWF1, other central BR biosynthesis genes upregulated under low N include CONSTITUTIVE PHOTOMORPHOGENIC DWARF, DWF4, and BRASSINOSTEROID-6-OXIDASE 2 Phenotypic characterization of knockout and knockdown mutants of these genes showed significant reduction of their root elongation response to low N, suggesting a systemic stimulation of BR biosynthesis to promote root elongation. Moreover, we show that low N-induced root elongation is associated with aboveground N content and that overexpression of DWF1 significantly improves plant growth and overall N accumulation. Our study reveals that mild N deficiency induces key genes in BR biosynthesis and that natural variation in BR synthesis contributes to the root foraging response, complementing the impact of enhanced BR signaling observed recently. Furthermore, these results suggest a considerable potential of BR biosynthesis to genetically engineer plants with improved N uptake.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/biossíntese , Nitrogênio/deficiência , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Transdução de Sinais/genética
8.
PLoS Biol ; 16(10): e2006024, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30356235

RESUMO

In plants, nutrient provision of shoots depends on the uptake and transport of nutrients across the root tissue to the vascular system. Nutrient delivery to the vasculature is mediated via the apoplastic transport pathway (ATP), which uses the free space in the cell walls and is controlled by apoplastic barriers and nutrient transporters at the endodermis, or via the symplastic transport pathway (STP). However, the relative importance of these transport routes remains elusive. Here, we show that the STP, mediated by the epidermal ammonium transporter 1;3 (AMT1;3), dominates the radial movement of ammonium across the root tissue when external ammonium is low, whereas apoplastic transport controlled by AMT1;2 at the endodermis prevails at high external ammonium. Then, AMT1;2 favors nitrogen (N) allocation to the shoot, revealing a major importance of the ATP for nutrient partitioning to shoots. When an endodermal bypass was introduced by abolishing Casparian strip (CS) formation, apoplastic ammonium transport decreased. By contrast, symplastic transport was increased, indicating synergism between the STP and the endodermal bypass. We further establish that the formation of apoplastic barriers alters the cell type-specific localization of AMTs and determines STP and ATP contributions. These results show how radial transport pathways vary along the longitudinal gradient of the root axis and contribute to nutrient partitioning between roots and shoots.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Transporte Biológico/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Parede Celular , Regulação da Expressão Gênica de Plantas/genética , Transporte de Íons/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia
9.
Plant Cell Physiol ; 61(3): 519-535, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31750920

RESUMO

Contamination of soils with heavy metals, such as nickel (Ni), is a major environmental concern due to increasing pollution from industrial activities, burning of fossil fuels, incorrect disposal of sewage sludge, excessive manure application and the use of fertilizers and pesticides in agriculture. Excess Ni induces leaf chlorosis and inhibits plant growth, but the mechanisms underlying growth inhibition remain largely unknown. A detailed analysis of root development in Arabidopsis thaliana in the presence of Ni revealed that this heavy metal induces gravitropic defects and locally inhibits root growth by suppressing cell elongation without significantly disrupting the integrity of the stem cell niche. The analysis of auxin-responsive reporters revealed that excess Ni inhibits shootward auxin distribution. Furthermore, we found that PIN2 is very sensitive to Ni, as the presence of this heavy metal rapidly reduced PIN2 levels in roots. A transcriptome analysis also showed that Ni affects the expression of many genes associated with plant cell walls and that Ni-induced transcriptional changes are largely independent of iron (Fe). In addition, we raised evidence that excess Ni increases the accumulation of reactive oxygen species and disturbs the integrity and orientation of microtubules. Together, our results highlight which processes are primarily targeted by Ni to alter root growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Níquel/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Gravitropismo/fisiologia , Metais Pesados , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma
10.
Nat Chem Biol ; 14(5): 442-450, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29581584

RESUMO

Iron is an essential but poorly bioavailable nutrient because of its low solubility, especially in alkaline soils. Here, we describe the discovery of a previously undescribed redox-active catecholic metabolite, termed sideretin, which derives from the coumarin fraxetin and is the primary molecule exuded by Arabidopsis thaliana roots in response to iron deficiency. We identified two enzymes that complete the biosynthetic pathway of fraxetin and sideretin. Chemical characterization of fraxetin and sideretin, and biological assays with pathway mutants, suggest that these coumarins are critical for iron nutrition in A. thaliana. Further, we show that sideretin production also occurs in eudicot species only distantly related to A. thaliana. Untargeted metabolomics of the root exudates of various eudicots revealed production of structurally diverse redox-active molecules in response to iron deficiency. Our results indicate that secretion of small-molecule reductants by roots may be a widespread and previously underappreciated component of reduction-based iron uptake.


Assuntos
Arabidopsis/metabolismo , Cumarínicos/metabolismo , Deficiências de Ferro , Oxirredução , Raízes de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Cinética , Metabolômica , Mutação , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , Rizosfera , Escopoletina/metabolismo , Solubilidade , Termodinâmica
11.
Plant Physiol ; 174(3): 1648-1668, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28500270

RESUMO

In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals.


Assuntos
Arabidopsis/fisiologia , Deficiências de Ferro , Metais Pesados/toxicidade , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Análise por Conglomerados , Ecótipo , FMN Redutase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Modelos Biológicos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Análise de Componente Principal
12.
Plant Physiol ; 174(3): 1633-1647, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28461400

RESUMO

Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis (Arabidopsis thaliana) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 (VIT1), MTP8 built up iron (Fe) hotspots in MTP8-expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Germinação , Homeostase , Ferro/metabolismo , Manganês/metabolismo , Sementes/embriologia , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Teste de Complementação Genética , Germinação/genética , Modelos Biológicos , Mutação/genética , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Sementes/genética , Espectrometria por Raios X
13.
Plant Physiol ; 166(2): 509-17, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25082891

RESUMO

During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status.


Assuntos
Raízes de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia
14.
Plant Physiol ; 164(1): 160-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24246380

RESUMO

Although iron (Fe) is one of the most abundant elements in the earth's crust, its low solubility in soils restricts Fe uptake by plants. Most plant species acquire Fe by acidifying the rhizosphere and reducing ferric to ferrous Fe prior to membrane transport. However, it is unclear how these plants access Fe in the rhizosphere and cope with high soil pH. In a mutant screening, we identified 2-oxoglutarate-dependent dioxygenase Feruloyl-CoA 6'-Hydroxylase1 (F6'H1) to be essential for tolerance of Arabidopsis (Arabidopsis thaliana) to high pH-induced Fe deficiency. Under Fe deficiency, F6'H1 is required for the biosynthesis of fluorescent coumarins that are released into the rhizosphere, some of which possess Fe(III)-mobilizing capacity and prevent f6'h1 mutant plants from Fe deficiency-induced chlorosis. Scopoletin was the most prominent coumarin found in Fe-deficient root exudates but failed to mobilize Fe(III), while esculetin, i.e. 6,7-dihydroxycoumarin, occurred in lower amounts but was effective in Fe(III) mobilization. Our results indicate that Fe-deficient Arabidopsis plants release Fe(III)-chelating coumarins as part of the strategy I-type Fe acquisition machinery.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cumarínicos/metabolismo , Dioxigenases/metabolismo , Ferro/farmacocinética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA Bacteriano , Dioxigenases/genética , Epiderme/fisiologia , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Mutação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Rizosfera , Escopoletina/metabolismo , Solo/química , Umbeliferonas/metabolismo
15.
Plant Cell ; 24(1): 33-49, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22234997

RESUMO

Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-ß-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Ferro/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
16.
Plant Physiol ; 163(1): 161-79, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852440

RESUMO

Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Boro/metabolismo , Cálcio/metabolismo , Ferro/metabolismo , Magnésio/metabolismo , Manganês/metabolismo , Micronutrientes/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Potássio/metabolismo , Enxofre/metabolismo , Zinco/metabolismo
17.
J Exp Bot ; 65(3): 769-78, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24353245

RESUMO

Root growth and development are of outstanding importance for the plant's ability to acquire water and nutrients from different soil horizons. To cope with fluctuating nutrient availabilities, plants integrate systemic signals pertaining to their nutritional status into developmental pathways that regulate the spatial arrangement of roots. Changes in the plant nutritional status and external nutrient supply modulate root system architecture (RSA) over time and determine the degree of root plasticity which is based on variations in the number, extension, placement, and growth direction of individual components of the root system. Roots also sense the local availability of some nutrients, thereby leading to nutrient-specific modifications in RSA, that result from the integration of systemic and local signals into the root developmental programme at specific steps. An in silico analysis of nutrient-responsive genes involved in root development showed that the majority of these specifically responded to the deficiency of individual nutrients while a minority responded to more than one nutrient deficiency. Such an analysis provides an interesting starting point for the identification of the molecular players underlying the sensing and transduction of the nutrient signals that mediate changes in the development and architecture of root systems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Alimentos , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia
18.
Nat Commun ; 15(1): 422, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212310

RESUMO

To mobilize sparingly available phosphorus (P) in the rhizosphere, many plant species secrete malate to release P sorbed onto (hydr)oxides of aluminum and iron (Fe). In the presence of Fe, malate can provoke Fe over-accumulation in the root apoplast, triggering a series of events that inhibit root growth. Here, we identified HYPERSENSITIVE TO LOW P1 (HYP1), a CYBDOM protein constituted of a DOMON and a cytochrome b561 domain, as critical to maintain cell elongation and meristem integrity under low P. We demonstrate that HYP1 mediates ascorbate-dependent trans-plasma membrane electron transport and can reduce ferric and cupric substrates in Xenopus laevis oocytes and in planta. HYP1 expression is up-regulated in response to P deficiency in the proximal zone of the root apical meristem. Disruption of HYP1 leads to increased Fe and callose accumulation in the root meristem and causes significant transcriptional changes in roots. We further demonstrate that HYP1 activity overcomes malate-induced Fe accumulation, thereby preventing Fe-dependent root growth arrest in response to low P. Collectively, our results uncover an ascorbate-dependent metalloreductase that is critical to protect root meristems of P-deficient plants from increased Fe availability and provide insights into the physiological function of the yet poorly characterized but ubiquitous CYBDOM proteins.


Assuntos
Meristema , Fósforo , Meristema/metabolismo , Fósforo/metabolismo , Malatos/metabolismo , Ferro/metabolismo , Plantas/metabolismo , Ácido Ascórbico/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
19.
Nat Commun ; 14(1): 3351, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311779

RESUMO

Cell type-specific mapping of element distribution is critical to fully understand how roots partition nutrients and toxic elements with aboveground parts. In this study, we developed a method that combines fluorescence-activated cell sorting (FACS) with inductively coupled plasma mass spectrometry (ICP-MS) to assess the ionome of different cell populations within Arabidopsis thaliana roots. The method reveals that most elements exhibit a radial concentration gradient increasing from the rhizodermis to inner cell layers, and detected previously unknown ionomic changes resulting from perturbed xylem loading processes. With this approach, we also identify a strong accumulation of manganese in trichoblasts of iron-deficient roots. We demonstrate that confining manganese sequestration in trichoblasts but not in endodermal cells efficiently retains manganese in roots, therefore preventing toxicity in shoots. These results indicate the existence of cell type-specific constraints for efficient metal sequestration in roots. Thus, our approach opens an avenue to investigate element compartmentation and transport pathways in plants.


Assuntos
Arabidopsis , Manganês , Citometria de Fluxo , Ferro , Nutrientes
20.
Curr Biol ; 33(18): 3926-3941.e5, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37699396

RESUMO

As a major determinant of the nutrient-acquiring root surface, root hairs (RHs) provide a low-input strategy to enhance nutrient uptake. Although primary and lateral roots exhibit elongation responses under mild nitrogen (N) deficiency, the foraging response of RHs and underlying regulatory mechanisms remain elusive. Employing transcriptomics and functional studies revealed a framework of molecular components composing a cascade of auxin synthesis, transport, and signaling that triggers RH elongation for N acquisition. Through upregulation of Tryptophan Aminotransferase of Arabidopsis 1 (TAA1) and YUCCA8, low N increases auxin accumulation in the root apex. Auxin is then directed to the RH differentiation zone via the auxin transport machinery, AUXIN TRANSPORTER PROTEIN 1 (AUX1) and PIN-FORMED 2 (PIN2). Upon arrival to the RH zone, auxin activates the transcription factors AUXIN RESPONSE FACTOR 6 and 8 (ARF6/8) to promote the epidermal and auxin-inducible transcriptional module ROOT HAIR DEFECTIVE 6 (RHD6)-LOTUS JAPONICA ROOT HAIRLESS-LIKE 3 (LRL3) to steer RH elongation in response to low N. Our study uncovers a spatially defined regulatory signaling cascade for N foraging by RHs, expanding the mechanistic framework of hormone-regulated nutrient sensing in plant roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Epiderme , Cabelo , Transdução de Sinais , Arabidopsis/genética , Ácidos Indolacéticos , Nitrogênio , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA