Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 170(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38687010

RESUMO

Spontaneous mutations are the ultimate source of novel genetic variation on which evolution operates. Although mutation rate is often discussed as a single parameter in evolution, it comprises multiple distinct types of changes at the level of DNA. Moreover, the rates of these distinct changes can be independently influenced by genomic background and environmental conditions. Using fluctuation tests, we characterized the spectrum of spontaneous mutations in Escherichia coli grown in low and high glucose environments. These conditions are known to affect the rate of spontaneous mutation in wild-type MG1655, but not in a ΔluxS deletant strain - a gene with roles in both quorum sensing and the recycling of methylation products used in E. coli's DNA repair process. We find an increase in AT>GC transitions in the low glucose environment, suggesting that processes relating to the production or repair of this mutation could drive the response of overall mutation rate to glucose concentration. Interestingly, this increase in AT>GC transitions is maintained by the glucose non-responsive ΔluxS deletant. Instead, an elevated rate of GC>TA transversions, more common in a high glucose environment, leads to a net non-responsiveness of overall mutation rate for this strain. Our results show how relatively subtle changes, such as the concentration of a carbon substrate or loss of a regulatory gene, can substantially influence the amount and nature of genetic variation available to selection.


Assuntos
Escherichia coli , Glucose , Taxa de Mutação , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Mutação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Reparo do DNA/genética , Percepção de Quorum/genética
2.
J Vis Exp ; (208)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949313

RESUMO

The archaeon Sulfolobus acidocaldarius has emerged as a promising thermophilic model system. Investigating how thermophiles adapt to changing temperatures is a key requirement, not only for understanding fundamental evolutionary processes but also for developing S. acidocaldarius as a chassis for bioengineering. One major obstacle to conducting experimental evolution with thermophiles is the expense of equipment maintenance and energy usage of traditional incubators for high-temperature growth. To address this challenge, a comprehensive experimental protocol for conducting experimental evolution in S. acidocaldarius is presented, utilizing low-cost and energy-efficient bench-top thermomixers. The protocol involves a batch culture technique with relatively small volumes (1.5 mL), enabling tracking of adaptation in multiple independent lineages. This method is easily scalable through the use of additional thermomixers. Such an approach increases the accessibility of S. acidocaldarius as a model system by reducing both initial investment and ongoing costs associated with experimental investigations. Moreover, the technique is transferable to other microbial systems for exploring adaptation to diverse environmental conditions.


Assuntos
Sulfolobus acidocaldarius , Extremófilos/fisiologia , Adaptação Fisiológica/fisiologia , Técnicas de Cultura Celular por Lotes/métodos , Técnicas de Cultura Celular por Lotes/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA