Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119924

RESUMO

Helitron-like elements (HLEs) are widespread eukaryotic DNA transposons employing a rolling-circle transposition mechanism. Despite their prevalence in fungi, animals, and plant genomes, identifying Helitrons remains a formidable challenge. We introduce HELIANO, a software for annotating and classifying autonomous and non-autonomous HLE sequences from whole genomes. HELIANO overcomes several limitations of existing tools in speed and accuracy, demonstrated through benchmarking and its application to the complex genomes of frogs (Xenopus tropicalis and Xenopus laevis) and rice (Oryza sativa), where it uncovered numerous previously unidentified HLEs. In an extensive analysis of 404 eukaryote genomes, we found HLEs widely distributed across phyla, with exceptions in specific taxa. HELIANO's application led to the discovery of numerous new HLEs in land plants and identified 20 protein domains captured by certain autonomous HLE families. A comprehensive phylogenetic analysis further classified HLEs into two primary clades, HLE1 and HLE2, and revealed nine subgroups, some of which are enriched within specific taxa. The future use of HELIANO promises to improve the global analysis of HLEs across genomes, significantly advancing our understanding of this fascinating transposon superfamily.

2.
Mol Biol Evol ; 40(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37401458

RESUMO

The recent evolutionary history of the Y chromosome in Drosophila simulans, a worldwide species of Afrotropical origin, is closely linked to that of X-linked meiotic drivers (Paris system). The spread of the Paris drivers in natural populations has elicited the selection of drive-resistant Y chromosomes. To infer the evolutionary history of the Y chromosome in relation to the Paris drive, we sequenced 21 iso-Y lines, each carrying a Y chromosome from a different location. Among them, 13 lines carry a Y chromosome that is able to counteract the effect of the drivers. Despite their very different geographical origins, all sensitive Y's are highly similar, suggesting that they share a recent common ancestor. The resistant Y chromosomes are more divergent and segregate in four distinct clusters. The phylogeny of the Y chromosome confirms that the resistant lineage predates the emergence of Paris drive. The ancestry of the resistant lineage is further supported by the examination of Y-linked sequences in the sister species of D. simulans, Drosophila sechellia and Drosophila mauritiana. We also characterized the variation in repeat content among Y chromosomes and identified multiple simple satellites associated with resistance. Altogether, the molecular polymorphism allows us to infer the demographic and evolutionary history of the Y chromosome and provides new insights on the genetic basis of resistance.


Assuntos
Drosophila simulans , Razão de Masculinidade , Animais , Drosophila simulans/genética , Cromossomo Y/genética , Evolução Biológica , Drosophila/genética
3.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36881879

RESUMO

Increasing numbers of horizontal transfer (HT) of genes and transposable elements are reported in insects. Yet the mechanisms underlying these transfers remain unknown. Here we first quantify and characterize the patterns of chromosomal integration of the polydnavirus (PDV) encoded by the Campopleginae Hyposoter didymator parasitoid wasp (HdIV) in somatic cells of parasitized fall armyworm (Spodoptera frugiperda). PDVs are domesticated viruses injected by wasps together with their eggs into their hosts in order to facilitate the development of wasp larvae. We found that six HdIV DNA circles integrate into the genome of host somatic cells. Each host haploid genome suffers between 23 and 40 integration events (IEs) on average 72 h post-parasitism. Almost all IEs are mediated by DNA double-strand breaks occurring in the host integration motif (HIM) of HdIV circles. We show that despite their independent evolutionary origins, PDV from both Campopleginae and Braconidae wasps use remarkably similar mechanisms for chromosomal integration. Next, our similarity search performed on 775 genomes reveals that PDVs of both Campopleginae and Braconidae wasps have recurrently colonized the germline of dozens of lepidopteran species through the same mechanisms they use to integrate into somatic host chromosomes during parasitism. We found evidence of HIM-mediated HT of PDV DNA circles in no less than 124 species belonging to 15 lepidopteran families. Thus, this mechanism underlies a major route of HT of genetic material from wasps to lepidopterans with likely important consequences on lepidopterans.


Assuntos
Polydnaviridae , Vespas , Animais , Polydnaviridae/genética , Vespas/genética , Larva/genética , Cromossomos
4.
Mol Biol Evol ; 38(9): 3512-3530, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34191026

RESUMO

The mechanisms by which transposable elements (TEs) can be horizontally transferred between animals are unknown, but viruses are possible candidate vectors. Here, we surveyed the presence of host-derived TEs in viral genomes in 35 deep sequencing data sets produced from 11 host-virus systems, encompassing nine arthropod host species (five lepidopterans, two dipterans, and two crustaceans) and six different double-stranded (ds) DNA viruses (four baculoviruses and two iridoviruses). We found evidence of viral-borne TEs in 14 data sets, with frequencies of viral genomes carrying a TE ranging from 0.01% to 26.33% for baculoviruses and from 0.45% to 7.36% for iridoviruses. The analysis of viral populations separated by a single replication cycle revealed that viral-borne TEs originating from an initial host species can be retrieved after viral replication in another host species, sometimes at higher frequencies. Furthermore, we detected a strong increase in the number of integrations in a viral population for a TE absent from the hosts' genomes, indicating that this TE has undergone intense transposition within the viral population. Finally, we provide evidence that many TEs found integrated in viral genomes (15/41) have been horizontally transferred in insects. Altogether, our results indicate that multiple large dsDNA viruses have the capacity to shuttle TEs in insects and they underline the potential of viruses to act as vectors of horizontal transfer of TEs. Furthermore, the finding that TEs can transpose between viral genomes of a viral species sets viruses as possible new niches in which TEs can persist and evolve.


Assuntos
Artrópodes , Vírus , Animais , Artrópodes/genética , Baculoviridae/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Insetos/genética , Vírus/genética
5.
J Virol ; 95(22): e0068421, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319152

RESUMO

Bracoviruses are domesticated viruses found in parasitic wasp genomes. They are composed of genes of nudiviral origin that are involved in particle production and proviral segments containing virulence genes that are necessary for parasitism success. During particle production, proviral segments are amplified and individually packaged as DNA circles in nucleocapsids. These particles are injected by parasitic wasps into host larvae together with their eggs. Bracovirus circles of two wasp species were reported to undergo chromosomal integration in parasitized host hemocytes, through a conserved sequence named the host integration motif (HIM). Here, we used bulk Illumina sequencing to survey integrations of Cotesia typhae bracovirus circles in the DNA of its host, the maize corn borer (Sesamia nonagrioides), 7 days after parasitism. First, assembly and annotation of a high-quality genome for C. typhae enabled us to characterize 27 proviral segments clustered in proviral loci. Using these data, we characterized large numbers of chromosomal integrations (from 12 to 85 events per host haploid genome) for all 16 bracovirus circles containing a HIM. Integrations were found in four S. nonagrioides tissues and in the body of a caterpillar in which parasitism had failed. The 12 remaining circles do not integrate but are maintained at high levels in host tissues. Surprisingly, we found that HIM-mediated chromosomal integration in the wasp germ line has occurred accidentally at least six times during evolution. Overall, our study furthers our understanding of wasp-host genome interactions and supports HIM-mediated chromosomal integration as a possible mechanism of horizontal transfer from wasps to their hosts. IMPORTANCE Bracoviruses are endogenous domesticated viruses of parasitoid wasps that are injected together with wasp eggs into wasp host larvae during parasitism. Several studies have shown that some DNA circles packaged into bracovirus particles become integrated into host somatic genomes during parasitism, but the phenomenon has never been studied using nontargeted approaches. Here, we use bulk Illumina sequencing to systematically characterize and quantify bracovirus circle integrations that occur in four tissues of the Mediterranean corn borer (Sesamia nonagrioides) during parasitism by the Cotesia typhae wasp. Our analysis reveals that all circles containing a HIM integrate at substantial levels (from 12 to 85 integrations per host cell, in total) in all tissues, while other circles do not integrate. In addition to shedding new light on wasp-bracovirus-host interactions, our study supports HIM-mediated chromosomal integration of bracovirus as a possible source of wasp-to-host horizontal transfer, with long-term evolutionary consequences.


Assuntos
DNA Viral , Genoma Viral , Interações Hospedeiro-Parasita/genética , Polydnaviridae/genética , Vespas/virologia , Animais , Transferência Genética Horizontal
6.
Mol Ecol ; 31(21): 5538-5551, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36070218

RESUMO

Bracoviruses (BVs) are domesticated viruses found in braconid parasitoid wasp genomes. They are composed of domesticated genes from a nudivrius, coding viral particles in which wasp DNA circles are packaged. BVs are viewed as possible vectors of horizontal transfer of genetic material (HT) from wasp to their hosts because they are injected, together with wasp eggs, by female wasps into their host larvae, and because they undergo massive chromosomal integration in multiple host tissues. Here, we show that chromosomal integrations of the Cotesia typhae BV (CtBV) persist up to the adult stage in individuals of its natural host, Sesamia nonagrioides, that survived parasitism. However, while reproducing host adults can bear an average of nearly two CtBV integrations per haploid genome, we were unable to retrieve any of these integrations in 500 of their offspring using Illumina sequencing. This suggests either that host gametes are less targeted by CtBVs than somatic cells or that gametes bearing BV integrations are nonfunctional. We further show that CtBV can massively integrate into the chromosomes of other lepidopteran species that are not normally targeted by the wasp in the wild, including one which is divergent by at least 100 million years from the natural host. Cell entry and chromosomal integration of BVs are thus unlikely to be major factors shaping wasp host range. Together, our results shed new light on the conditions under which BV-mediated wasp-to-host HT may occur and provide information that may be helpful to evaluate the potential risks of uncontrolled HT associated with the use of parasitoid wasps as biocontrol agents.


Assuntos
Polydnaviridae , Vespas , Humanos , Animais , Feminino , Polydnaviridae/genética , Vespas/genética , Genoma , Simbiose , Cromossomos
7.
PLoS Biol ; 17(10): e3000438, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600190

RESUMO

Microbial endosymbiosis is widespread in animals, with major ecological and evolutionary implications. Successful symbiosis relies on efficient vertical transmission through host generations. However, when symbionts negatively affect host fitness, hosts are expected to evolve suppression of symbiont effects or transmission. Here, we show that sex chromosomes control vertical transmission of feminizing Wolbachia endosymbionts in the isopod Armadillidium nasatum. Theory predicts that the invasion of an XY/XX species by cytoplasmic sex ratio distorters is unlikely because it leads to fixation of the unusual (and often lethal or infertile) YY genotype. We demonstrate that A. nasatum X and Y sex chromosomes are genetically highly similar and that YY individuals are viable and fertile, thereby enabling Wolbachia spread in this XY-XX species. Nevertheless, we show that Wolbachia cannot drive fixation of YY individuals, because infected YY females do not transmit Wolbachia to their offspring, unlike XX and XY females. The genetic basis fits the model of a Y-linked recessive allele (associated with an X-linked dominant allele), in which the homozygous state suppresses Wolbachia transmission. Moreover, production of all-male progenies by infected YY females restores a balanced sex ratio at the host population level. This suggests that blocking of Wolbachia transmission by YY females may have evolved to suppress feminization, thereby offering a whole new perspective on the evolutionary interplay between microbial symbionts and host sex chromosomes.


Assuntos
Isópodes/genética , Cromossomos Sexuais , Processos de Determinação Sexual , Simbiose/genética , Wolbachia/fisiologia , Alelos , Animais , Feminino , Genótipo , Homozigoto , Isópodes/microbiologia , Masculino , Modelos Genéticos , Característica Quantitativa Herdável , Razão de Masculinidade
8.
PLoS Genet ; 15(2): e1007965, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30707693

RESUMO

More than any other genome components, Transposable Elements (TEs) have the capacity to move across species barriers through Horizontal Transfer (HT), with substantial evolutionary consequences. Previous large-scale surveys, based on full-genomes comparisons, have revealed the transposition mode as an important predictor of HT rates variation across TE superfamilies. However, host biology could represent another major explanatory factor, one that needs to be investigated through extensive taxonomic sampling. Here we test this hypothesis using a field collection of 460 arthropod species from Tahiti and surrounding islands. Through targeted massive parallel sequencing, we uncover patterns of HT in three widely-distributed TE superfamilies with contrasted modes of transposition. In line with earlier findings, the DNA transposons under study (TC1-Mariner) were found to transfer horizontally at the highest frequency, closely followed by the LTR superfamily (Copia), in contrast with the non-LTR superfamily (Jockey), that mostly diversifies through vertical inheritance and persists longer within genomes. Strikingly, across all superfamilies, we observe a marked excess of HTs in Lepidoptera, an insect order that also commonly hosts baculoviruses, known for their ability to transport host TEs. These results turn the spotlight on baculoviruses as major potential vectors of TEs in arthropods, and further emphasize the importance of non-vertical TE inheritance in genome evolution.


Assuntos
Artrópodes/genética , Elementos de DNA Transponíveis , Lepidópteros/genética , Animais , Artrópodes/classificação , Baculoviridae/genética , Evolução Molecular , Transferência Genética Horizontal , Variação Genética , Genoma de Inseto , Lepidópteros/classificação , Lepidópteros/virologia , Modelos Genéticos , Filogenia , Polinésia
9.
Annu Rev Entomol ; 66: 355-372, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32931312

RESUMO

Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.


Assuntos
Evolução Biológica , Elementos de DNA Transponíveis , Insetos/genética , Animais , Genoma de Inseto
10.
Mol Biol Evol ; 36(4): 727-741, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668787

RESUMO

The terrestrial isopod Armadillidium vulgare is an original model to study the evolution of sex determination and symbiosis in animals. Its sex can be determined by ZW sex chromosomes, or by feminizing Wolbachia bacterial endosymbionts. Here, we report the sequence and analysis of the ZW female genome of A. vulgare. A distinguishing feature of the 1.72 gigabase assembly is the abundance of repeats (68% of the genome). We show that the Z and W sex chromosomes are essentially undifferentiated at the molecular level and the W-specific region is extremely small (at most several hundreds of kilobases). Our results suggest that recombination suppression has not spread very far from the sex-determining locus, if at all. This is consistent with A. vulgare possessing evolutionarily young sex chromosomes. We characterized multiple Wolbachia nuclear inserts in the A. vulgare genome, none of which is associated with the W-specific region. We also identified several candidate genes that may be involved in the sex determination or sexual differentiation pathways. The A. vulgare genome serves as a resource for studying the biology and evolution of crustaceans, one of the most speciose and emblematic metazoan groups.


Assuntos
Evolução Biológica , Genoma , Isópodes/genética , Cromossomos Sexuais , Processos de Determinação Sexual , Animais , Feminino , Masculino , Wolbachia/genética
11.
Anal Biochem ; 600: 113770, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32389693

RESUMO

Identifying and quantifying genome size variation among species and understanding the underlying causes is a long-standing objective in evolutionary biology. Here, we investigated the basis of genome size variation between two closely related species of terrestrial isopods: Armadillidium vulgare and Armadillidium nasatum. The two species diverged 25 million years ago and the A. vulgare genome is ~500 megabases larger than the A. nasatum genome (1.7 vs. 1.2 gigabases, respectively). Our analyses indicated that genome size difference is essentially attributed to transposable elements (TEs). We found that the deletion rate may be slightly higher in A. nasatum than in A. vulgare, but it is unlikely to explain the observed genome size difference. As the two genomes largely share the same TE families, differential transpositional activity also contributes to the observed variation. Analyses of TE expression suggested that the cumulative expression level of all expressed TEs was higher in A. nasatum than in A. vulgare. Assuming TE expression level is a good proxy for TE transpositional activity, our results suggest that the two species may have recently been experiencing different TE transposition dynamics. Overall, our results illustrate the important impact TEs can have on genome structure and evolution between closely related species.


Assuntos
Crustáceos/genética , Elementos de DNA Transponíveis/genética , Animais , Variação Genética , Tamanho do Genoma , Especificidade da Espécie
12.
Bioessays ; 40(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29283188

RESUMO

Whoever compares the genomes of distantly related species might find aberrantly high sequence similarity at certain loci. Such anomaly can only be explained by genetic material being transferred through other means than reproduction, that is, a horizontal transfer (HT). Between multicellular organisms, the transferred material will likely turn out to be a transposable element (TE). Because TEs can move between loci and invade chromosomes by replicating themselves, HT of TEs (HTT) profoundly impacts genome evolution. Yet, very few studies have quantified HTT at large taxonomic scales. Indeed, this task currently faces difficulties that range from the variable quality of available genome sequences to limitations of analytical procedures, some of which have been overlooked. Here we review the many challenges that an extensive analysis of HTT must overcome, we expose biases and limits of current methods, suggest solutions or workarounds, and reflect upon approaches that could be developed to better quantify this phenomenon.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Transferência Genética Horizontal/genética , Animais , Genoma , Análise de Sequência/métodos
13.
Proc Natl Acad Sci U S A ; 114(18): 4721-4726, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416702

RESUMO

Horizontal transfer (HT) of genetic material is central to the architecture and evolution of prokaryote genomes. Within eukaryotes, the majority of HTs reported so far are transfers of transposable elements (TEs). These reports essentially come from studies focusing on specific lineages or types of TEs. Because of the lack of large-scale survey, the amount and impact of HT of TEs (HTT) in eukaryote evolution, as well as the trends and factors shaping these transfers, are poorly known. Here, we report a comprehensive analysis of HTT in 195 insect genomes, representing 123 genera and 13 of the 28 insect orders. We found that these insects were involved in at least 2,248 HTT events that essentially occurred during the last 10 My. We show that DNA transposons transfer horizontally more often than retrotransposons, and unveil phylogenetic relatedness and geographical proximity as major factors facilitating HTT in insects. Even though our study is restricted to a small fraction of insect biodiversity and to a recent evolutionary timeframe, the TEs we found to be horizontally transferred generated up to 24% (2.08% on average) of all nucleotides of insect genomes. Together, our results establish HTT as a major force shaping insect genome evolution.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Transferência Genética Horizontal , Genoma de Inseto , Insetos/genética , Animais
14.
PLoS Genet ; 12(2): e1005838, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26829124

RESUMO

Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.


Assuntos
Baculoviridae/genética , Interações Hospedeiro-Patógeno/genética , Mariposas/genética , Mariposas/virologia , Animais , Sequência de Bases , Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal , Genoma Viral , Padrões de Herança/genética , Motivos de Nucleotídeos/genética , Análise de Sequência de DNA
15.
Proc Natl Acad Sci U S A ; 113(52): 15036-15041, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27930295

RESUMO

Sex determination is a fundamental developmental pathway governing male and female differentiation, with profound implications for morphology, reproductive strategies, and behavior. In animals, sex differences between males and females are generally determined by genetic factors carried by sex chromosomes. Sex chromosomes are remarkably variable in origin and can differ even between closely related species, indicating that transitions occur frequently and independently in different groups of organisms. The evolutionary causes underlying sex chromosome turnover are poorly understood, however. Here we provide evidence indicating that Wolbachia bacterial endosymbionts triggered the evolution of new sex chromosomes in the common pillbug Armadillidium vulgare We identified a 3-Mb insert of a feminizing Wolbachia genome that was recently transferred into the pillbug nuclear genome. The Wolbachia insert shows perfect linkage to the female sex, occurs in a male genetic background (i.e., lacking the ancestral W female sex chromosome), and is hemizygous. Our results support the conclusion that the Wolbachia insert is now acting as a female sex-determining region in pillbugs, and that the chromosome carrying the insert is a new W sex chromosome. Thus, bacteria-to-animal horizontal genome transfer represents a remarkable mechanism underpinning the birth of sex chromosomes. We conclude that sex ratio distorters, such as Wolbachia endosymbionts, can be powerful agents of evolutionary transitions in sex determination systems in animals.


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Cromossomos Sexuais , Wolbachia/genética , Animais , Evolução Biológica , Cruzamentos Genéticos , Citoplasma/metabolismo , Feminino , Genótipo , Isópodes/microbiologia , Masculino , Microscopia Eletrônica de Transmissão , Filogenia , Processos de Determinação Sexual , Razão de Masculinidade , Simbiose
16.
BMC Biol ; 16(1): 43, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669603

RESUMO

BACKGROUND: Oomycetes are a group of filamentous eukaryotic microorganisms that have colonized all terrestrial and oceanic ecosystems, and they include prominent plant pathogens. The Aphanomyces genus is unique in its ability to infect both plant and animal species, and as such exemplifies oomycete versatility in adapting to different hosts and environments. Dissecting the underpinnings of oomycete diversity provides insights into their specificity and pathogenic mechanisms. RESULTS: By carrying out genomic analyses of the plant pathogen A. euteiches and the crustacean pathogen A. astaci, we show that host specialization is correlated with specialized secretomes that are adapted to the deconstruction of the plant cell wall in A. euteiches and protein degradation in A. astaci. The A. euteiches genome is characterized by a large repertoire of small secreted protein (SSP)-encoding genes that are highly induced during plant infection, and are not detected in other oomycetes. Functional analysis revealed an SSP from A. euteiches containing a predicted nuclear-localization signal which shuttles to the plant nucleus and increases plant susceptibility to infection. CONCLUSION: Collectively, our results show that Aphanomyces host adaptation is associated with evolution of specialized secretomes and identify SSPs as a new class of putative oomycete effectors.


Assuntos
Aphanomyces/patogenicidade , Genômica/métodos , Aclimatação/genética , Aclimatação/fisiologia , Animais , Aphanomyces/genética , Oomicetos/genética , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia
17.
Nat Rev Genet ; 13(4): 283-96, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22421730

RESUMO

Recent studies have uncovered myriad viral sequences that are integrated or 'endogenized' in the genomes of various eukaryotes. Surprisingly, it appears that not just retroviruses but almost all types of viruses can become endogenous. We review how these genomic 'fossils' offer fresh insights into the origin, evolutionary dynamics and structural evolution of viruses, which are giving rise to the burgeoning field of palaeovirology. We also examine the multitude of ways through which endogenous viruses have influenced, for better or worse, the biology of their hosts. We argue that the conflict between hosts and viruses has led to the invention and diversification of molecular arsenals, which, in turn, promote the cellular co-option of endogenous viruses.


Assuntos
Evolução Biológica , DNA Viral/genética , Eucariotos/virologia , Interações Hospedeiro-Patógeno/genética , Vírus/genética , Sítios de Ligação , Regulação da Expressão Gênica , Rearranjo Gênico , Genes Virais , Mutagênese , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fenômenos Fisiológicos Virais
18.
Nature ; 464(7293): 1347-50, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20428170

RESUMO

Horizontal transfer (HT), or the passage of genetic material between non-mating species, is increasingly recognized as an important force in the evolution of eukaryotic genomes. Transposons, with their inherent ability to mobilize and amplify within genomes, may be especially prone to HT. However, the means by which transposons can spread across widely diverged species remain elusive. Here we present evidence that host-parasite interactions have promoted the HT of four transposon families between invertebrates and vertebrates. We found that Rhodnius prolixus, a triatomine bug feeding on the blood of various tetrapods and vector of Chagas' disease in humans, carries in its genome four distinct transposon families that also invaded the genomes of a diverse, but overlapping, set of tetrapods. The bug transposons are approximately 98% identical and cluster phylogenetically with those of the opossum and squirrel monkey, two of its preferred mammalian hosts in South America. We also identified one of these transposon families in the pond snail Lymnaea stagnalis, a cosmopolitan vector of trematodes infecting diverse vertebrates, whose ancestral sequence is nearly identical and clusters with those found in Old World mammals. Together these data provide evidence for a previously hypothesized role of host-parasite interactions in facilitating HT among animals. Furthermore, the large amount of DNA generated by the amplification of the horizontally transferred transposons supports the idea that the exchange of genetic material between hosts and parasites influences their genomic evolution.


Assuntos
Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal/genética , Interações Hospedeiro-Parasita/genética , Parasitos/classificação , Parasitos/genética , Filogenia , Animais , Sequência de Bases , Vetores de Doenças , Evolução Molecular , Dosagem de Genes , Geografia , Lymnaea/genética , Lymnaea/fisiologia , Dados de Sequência Molecular , Gambás/genética , Gambás/parasitologia , Parasitos/fisiologia , Rhodnius/genética , Rhodnius/fisiologia , Saimiri/genética , Saimiri/parasitologia
19.
Virologie (Montrouge) ; 20(3): 158-173, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065895

RESUMO

Endogenous viruses are viral genomes that became integrated into the germline genome of their hosts and vertically inherited, from generation to generation, in host populations. Recent advances in genome sequencing have triggered the discovery of many non-retroviral endogenous viruses, showing that all types of eukaryotic viruses can become endogenous. This article first explains some of the methods that are used to systematically detect endogenous viruses in eukaryotic genomes and provides a detailed account of the various ways through which these viruses can shape the evolution of their host's genomes. It then shows how the discovery of endogenous viruses can shed new light on our knowledge of the origin and evolution of current viruses, as well as on the ecology of virus-host interactions. Finally, several research directions are proposed, and it is argued that an approach coupling paleovirology and virology can reveal the full complexity of the interactions between endogenous viruses, current viruses and their hosts.

20.
Cells Dev ; 179: 203924, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38692409

RESUMO

While understanding the genetic underpinnings of osteogenesis has far-reaching implications for skeletal diseases and evolution, a comprehensive characterization of the osteoblastic regulatory landscape in non-mammalian vertebrates is still lacking. Here, we compared the ATAC-Seq profile of Xenopus tropicalis (Xt) osteoblasts to a variety of non mineralizing control tissues, and identified osteoblast-specific nucleosome free regions (NFRs) at 527 promoters and 6747 distal regions. Sequence analyses, Gene Ontology, RNA-Seq and ChIP-Seq against four key histone marks confirmed that the distal regions correspond to bona fide osteogenic transcriptional enhancers exhibiting a shared regulatory logic with mammals. We report 425 regulatory regions conserved with human and globally associated to skeletogenic genes. Of these, 35 regions have been shown to impact human skeletal phenotypes by GWAS, including one trps1 enhancer and the runx2 promoter, two genes which are respectively involved in trichorhinophalangeal syndrome type I and cleidocranial dysplasia. Intriguingly, 60 osteoblastic NFRs also align to the genome of the elephant shark, a species lacking osteoblasts and bone tissue. To tackle this paradox, we chose to focus on dlx5 because its conserved promoter, known to integrate regulatory inputs during mammalian osteogenesis, harbours an osteoblast-specific NFR in both frog and human. Hence, we show that dlx5 is expressed in Xt and elephant shark odontoblasts, supporting a common cellular and genetic origin of bone and dentine. Taken together, our work (i) unravels the Xt osteogenic regulatory landscape, (ii) illustrates how cross-species comparisons harvest data relevant to human biology and (iii) reveals that a set of genes including bnc2, dlx5, ebf3, mir199a, nfia, runx2 and zfhx4 drove the development of a primitive form of mineralized skeletal tissue deep in the vertebrate lineage.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Osteoblastos , Fenótipo , Regiões Promotoras Genéticas , Xenopus , Animais , Humanos , Osteoblastos/metabolismo , Regiões Promotoras Genéticas/genética , Xenopus/genética , Elementos Facilitadores Genéticos/genética , Cromatina/metabolismo , Cromatina/genética , Evolução Biológica , Vertebrados/genética , Osso e Ossos/metabolismo , Osteogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA