Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(5): 1659-1673, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38351869

RESUMO

Monoclonal antibodies (MAbs) are powerful therapeutic tools in modern medicine and represent a rapidly expanding multibillion USD market. While bioprocesses are generally well understood and optimized for MAbs, online quality control remains challenging. Notably, N-glycosylation is a critical quality attribute of MAbs as it affects binding to Fcγ receptors (FcγRs), impacting the efficacy and safety of MAbs. Traditional N-glycosylation characterization methods are ill-suited for online monitoring of a bioreactor; in contrast, surface plasmon resonance (SPR) represents a promising avenue, as SPR biosensors can record MAb-FcγR interactions in real-time and without labeling. In this study, we produced five lots of differentially glycosylated Trastuzumab (TZM) and finely characterized their glycosylation profile by HILIC-UPLC chromatography. We then compared the interaction kinetics of these MAb lots with four FcγRs including FcγRIIA and FcγRIIB at 5°C and 25°C. When interacting with FcγRIIA/B at low temperature, the differentially glycosylated MAb lots exhibited distinct kinetic behaviors, contrary to room-temperature experiments. Galactosylated TZM (1) and core fucosylated TZM (2) could be discriminated and even quantified using an analytical technique based on the area under the curve of the signal recorded during the dissociation phase of a SPR sensorgram describing the interaction with FcγRIIA (1) or FcγRII2B (2). Because of the rapidity of the proposed method (<5 min per measurement) and the small sample concentration it requires (as low as 30 nM, exact concentration not required), it could be a valuable process analytical technology for MAb glycosylation monitoring.


Assuntos
Anticorpos Monoclonais , Receptores de IgG , Anticorpos Monoclonais/química , Receptores de IgG/metabolismo , Ressonância de Plasmônio de Superfície , Glicosilação , Temperatura , Trastuzumab
2.
Glycobiology ; 32(8): 691-700, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35436341

RESUMO

In this study, we investigated the utility of glycoconjugates based on a linear α-1,6-glucan chain synthesized using a recombinant α-1,6-glucosyltransferase from the 26695 strain of Helicobacter pylori. Capillary electrophoresis-mass spectrometry analysis confirmed the main product to contain 9-10 sequentially added α-1,6-linked glucose residues. This was consistent with a length of α-1,6-glucan structure present in the outer core region of H. pylori lipopolysaccharide (LPS) from strains 26695 and 26695 HP0826::Kan. The synthetic α-1,6-glucan was conjugated to either bovine serum albumin or tetanus toxoid and immunological properties of resultant glycoconjugates investigated. The conjugates were immunogenic in rabbits and mice and induced strong and specific IgG responses against purified LPS from typeable and nontypeable α-1,6-glucan-positive H. pylori strains. Furthermore, the post-immune sera from rabbits that received the conjugates were bactericidal and cross-reacted with selected clarithromycin-resistant and clarithromycin-susceptible clinical isolates of H. pylori. This technology offers a novel approach to the design of a synthetic carbohydrate-based vaccine against H. pylori.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Claritromicina , Glucanos/química , Glicoconjugados/química , Infecções por Helicobacter/prevenção & controle , Lipopolissacarídeos/química , Camundongos , Coelhos , Vacinas Conjugadas
3.
Biotechnol Bioeng ; 119(9): 2331-2344, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35508753

RESUMO

Alpha-1-antitrypsin (A1AT) is a serine protease inhibitor which blocks the activity of serum proteases including neutrophil elastase to protect the lungs. Its deficiency is known to increase the risk of pulmonary emphysema as well as chronic obstructive pulmonary disease. Currently, the only treatment for patients with A1AT deficiency is weekly injection of plasma-purified A1AT. There is still today no commercial source of therapeutic recombinant A1AT, likely due to significant differences in expression host-specific glycosylation profile and/or high costs associated with the huge therapeutic dose needed. Accordingly, we aimed to produce high levels of recombinant wild-type A1AT, as well as a mutated protein (mutein) version for increased oxidation resistance, with N-glycans analogous to human plasma-derived A1AT. To achieve this, we disrupted two endogenous glycosyltransferase genes controlling core α-1,6-fucosylation (Fut8) and α-2,3-sialylation (ST3Gal4) in CHO cells using CRISPR/Cas9 technology, followed by overexpression of human α-2,6-sialyltransferase (ST6Gal1) using a cumate-inducible expression system. Volumetric A1AT productivity obtained from stable CHO pools was 2.5- to 6.5-fold higher with the cumate-inducible CR5 promoter compared to five strong constitutive promoters. Using the CR5 promoter, glycoengineered stable CHO pools were able to produce over 2.1 and 2.8 g/L of wild-type and mutein forms of A1AT, respectively, with N-glycans analogous to the plasma-derived clinical product Prolastin-C. Supplementation of N-acetylmannosamine to the cell culture media during production increased the overall sialylation of A1AT as well as the proportion of bi-antennary and disialylated A2G2S2 N-glycans. These purified recombinant A1AT proteins showed in vitro inhibitory activity equivalent to Prolastin-C and substitution of methionine residues 351 and 358 with valines rendered A1AT significantly more resistant to oxidation. The recombinant A1AT mutein bearing an improved oxidation resistance described in this study could represent a viable biobetter drug, offering a safe and more stable alternative for augmentation therapy.


Assuntos
Deficiência de alfa 1-Antitripsina , alfa 1-Antitripsina , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Polissacarídeos , Proteínas Recombinantes/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/farmacologia , Deficiência de alfa 1-Antitripsina/tratamento farmacológico
4.
Biotechnol Bioeng ; 119(8): 2206-2220, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35509261

RESUMO

Some effector functions prompted by immunoglobulin G (IgG) antibodies, such as antibody-dependent cell-mediated cytotoxicity (ADCC), strongly depend on the N-glycans linked to asparagine 297 of the Fc region of the protein. A single α-(1,6)-fucosyltransferase (FUT8) is responsible for catalyzing the addition of an α-1,6-linked fucose residue to the first GlcNAc residue of the N-linked glycans. Antibodies missing this core fucose show a significantly enhanced ADCC and increased antitumor activity, which could help reduce therapeutic dose requirement, potentially translating into reduced safety concerns and manufacturing costs. Several approaches have been developed to modify glycans and improve the biological functions of antibodies. Here, we demonstrate that expression of a membrane-associated anti-FUT8 intrabody engineered to reside in the endoplasmic reticulum and Golgi apparatus can efficiently reduce FUT8 activity and therefore the core-fucosylation of the Fc N-glycan of an antibody. IgG1-producing CHO cells expressing the intrabody secrete antibodies with reduced core fucosylation as demonstrated by lectin blot analysis and UPLC-HILIC glycan analysis. Cells engineered to inhibit directly and specifically alpha-(1,6)-fucosyltransferase activity allows for the production of g/L levels of IgGs with strongly enhanced ADCC effector function, for which the level of fucosylation can be selected. The quick and efficient method described here should have broad practical applicability for the development of next-generation therapeutic antibodies with enhanced effector functions.


Assuntos
Fucose , Fucosiltransferases , Animais , Anticorpos Monoclonais/química , Células CHO , Cricetinae , Cricetulus , Fucose/metabolismo , Fucosiltransferases/genética , Imunoglobulina G/química , Polissacarídeos
5.
Proc Natl Acad Sci U S A ; 114(5): E679-E688, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096352

RESUMO

The vast majority of proteins are posttranslationally altered, with the addition of covalently linked sugars (glycosylation) being one of the most abundant modifications. However, despite the hydrolysis of protein peptide bonds by peptidases being a process essential to all life on Earth, the fundamental details of how peptidases accommodate posttranslational modifications, including glycosylation, has not been addressed. Through biochemical analyses and X-ray crystallographic structures we show that to hydrolyze their substrates, three structurally related metallopeptidases require the specific recognition of O-linked glycan modifications via carbohydrate-specific subsites immediately adjacent to their peptidase catalytic machinery. The three peptidases showed selectivity for different glycans, revealing protein-specific adaptations to particular glycan modifications, yet always cleaved the peptide bond immediately preceding the glycosylated residue. This insight builds upon the paradigm of how peptidases recognize substrates and provides a molecular understanding of glycoprotein degradation.


Assuntos
Peptídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Escherichia coli/genética , Fetuínas/metabolismo , Glicopeptídeos/metabolismo , Glicosilação , Mucinas/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional
6.
J Bacteriol ; 201(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30692173

RESUMO

Campylobacter jejuni and Campylobacter coli are the most common causes of bacterial gastroenteritis in the world. Ganglioside mimicry by C. jejuni lipooligosaccharide (LOS) is the triggering factor of Guillain-Barré syndrome (GBS), an acute polyneuropathy. Sialyltransferases from glycosyltransferase family 42 (GT-42) are essential for the expression of ganglioside mimics in C. jejuni Recently, two novel GT-42 genes, cstIV and cstV, have been identified in C. coli Despite being present in ∼11% of currently available C. coli genomes, the biological role of cstIV and cstV is unknown. In the present investigation, mutation studies with two strains expressing either cstIV or cstV were performed and mass spectrometry was used to investigate differences in the chemical composition of LOS. Attempts were made to identify donor and acceptor molecules using in vitro activity tests with recombinant GT-42 enzymes. Here we show that CstIV and CstV are involved in C. coli LOS biosynthesis. In particular, cstV is associated with LOS sialylation, while cstIV is linked to the addition of a diacetylated nonulosonic acid residue.IMPORTANCE Despite the fact that Campylobacter coli a major foodborne pathogen, its glycobiology has been largely neglected. The genetic makeup of the C. coli lipooligosaccharide biosynthesis locus was largely unknown until recently. C. coli harbors a large set of genes associated with lipooligosaccharide biosynthesis, including genes for several putative glycosyltransferases involved in the synthesis of sialylated lipooligosaccharide in Campylobacter jejuni In the present study, C. coli was found to express lipooligosaccharide structures containing sialic acid and other nonulosonate acids. These findings have a strong impact on our understanding of C. coli ecology, host-pathogen interaction, and pathogenesis.


Assuntos
Vias Biossintéticas/genética , Campylobacter coli/genética , Campylobacter coli/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lipopolissacarídeos/biossíntese , Espectrometria de Massas , Metaboloma , Mutação
7.
Anal Chem ; 91(14): 8908-8917, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31251585

RESUMO

Influenza vaccine potency is determined by the quantification of immunologically active hemagglutinin capable of eliciting neutralizing antibodies upon immunization. Currently, the single radial immunodiffusion (SRID) method is the standard in vitro potency assay used for lot release of seasonal inactivated influenza vaccines. Despite the proven usage of SRID, significant limitations such as the time-consuming preparation of reagents and limited dynamic range warrant the need for the development of alternative potency assays. Such alternative approaches need to discriminate and quantify relevant hemagglutinin material, provide strain identity, and be independent of strain-specific and seasonal reagents. Herein, we present a proof of concept method that combines the capture of conformationally well-folded hemagglutinin via a sialic acid binding step with the resolving power of reversed-phase high-performance liquid chromatography for strain identity and determination. Details of the protocol for the selective capture of receptor-binding hemagglutinin, its release from the receptor, and its relative determination are presented. This approach was found to provide flexibility for the reagents to be used and was adaptable to varying strain compositions of influenza vaccines. This proof of concept approach was developed as an antibody-independent methodology.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Animais , Aves , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa , Glicoproteínas de Hemaglutininação de Vírus da Influenza/isolamento & purificação , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Potência de Vacina , Vacinas de Produtos Inativados/imunologia
8.
J Mol Recognit ; 32(11): e2805, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31423671

RESUMO

Single-domain antibodies (sdAbs), the variable domains of camelid heavy chain-only antibodies, are generally thought to poorly recognize nonproteinaceous small molecules and carbohydrates in comparison with conventional antibodies. However, the structures of anti-methotrexate, anti-triclocarban and anti-cortisol sdAbs revealed unexpected contributions of the non-hypervariable "CDR4" loop, formed between ß-strands D and E of framework region 3, in binding. Here, we investigated the potential role of CDR4 in sdAb binding to a hapten, 15-acetyl-deoxynivalenol (15-AcDON), and to carbohydrates. We constructed and panned a phage-displayed library in which CDR4 of the 15-AcDON-specific sdAb, NAT-267, was extended and randomized. From this library, we identified one sdAb, MA-232, bearing a 14-residue insertion in CDR4 and showing improved binding to 15-AcDON by ELISA and surface plasmon resonance. On the basis of these results, we constructed a second set of phage-displayed libraries in which the CDR4 and other regions of three hapten- or carbohydrate-binding sdAbs were diversified. With the goal of identifying sdAbs with novel glycan-binding specificities, we panned the library against four tumor-associated carbohydrate antigens but were unable to enrich binding phages. Thus, we conclude that while CDR4 may play a role in binding of some rare hapten-specific sdAbs, diversifying this region through molecular engineering is probably not a general solution to sdAb carbohydrate recognition in the absence of a paired VL domain.


Assuntos
Carboidratos/química , Haptenos/química , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Regiões Determinantes de Complementaridade/química , Modelos Moleculares , Biblioteca de Peptídeos , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína
9.
Toxicol Appl Pharmacol ; 377: 114627, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202640

RESUMO

In many neuropathologies activated microglia and macrophages cause neurotoxicity and prolong the inflammatory response. We have previously characterized the glycosphingolipid Neurostatin (Nst), which potentially reduces these detrimental mechanisms. Nst, isolated from mammalian brain, is the GD1b ganglioside with O-acetylation of the outer sialic acid residue. Using the enzyme sialate-O-acetyltransferase (SOAT), we obtained several O-acetylated gangliosides and O-propionylated GD1b (PrGD1b). In the present study we investigated the anti-inflammatory effects of these compounds. Nst and other O-acetylated gangliosides reduced nitrite production in microglial cells which were activated with lipopolysaccharide (LPS), but did not affect nitrite production after their stimulation with interferon gamma (IFNγ). Structure-activity relationship analysis showed that Nst was the most active ganglioside as inhibitor of nitrite production. Its ceramide moiety is essential for this, and both, the O-acetylation and the monosaccharide chain are important for the anti-inflammatory activity of the gangliosides. We also found that Nst reduced iNOS, IL-6 and IL-12 transcription in LPS-induced microglia, likely by inhibiting nuclear localization of NFκB. In co-cultures, Nst reduced neuronal cell death caused by LPS-activated microglia. In vivo, Nst diminished microglia activation in a mouse model of acute neuroinflammation. We propose that Nst and other O-acetylated gangliosides are neuroprotective regulators of microglia activity under both physiological and pathological conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Encefalite/prevenção & controle , Gangliosídeos/farmacologia , Glicoesfingolipídeos/farmacologia , NF-kappa B/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Transportadores de Ânions Orgânicos/metabolismo , Ratos , Ratos Wistar
10.
Bioprocess Biosyst Eng ; 42(5): 711-725, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30673843

RESUMO

Mammalian-inducible expression systems are increasingly available and offer an attractive platform for the production of recombinant proteins. In this work, we have conducted process development for a cumate-inducible GS-CHO cell-line-expressing rituximab. To cope with the limitations encountered in batch when inducing at high cell densities, we have explored the use of fed-batch, sequential medium replacements, and continuous perfusion strategies applied during the pre-induction (growth) phase to enhance process performance in terms of product yield and quality. In shake flask, a fed-batch mode and a complete medium exchange at the time of induction were shown to significantly increase the integral of viable cell concentration and antibody titer compared to batch culture. Further enhancement of product yield was achieved by combining bolus concentrated feed additions with sequential medium replacement, but product galactosylation was reduced compared to fed-batch mode, as a result of the extended culture duration. In bioreactor, combining continuous perfusion of the basal medium with bolus daily feeding during the pre-induction period and harvesting earlier during the production phase is shown to provide a good trade-off between antibody titer and product galactosylation. Overall, our results demonstrate the importance of selecting a suitable operating mode and harvest time when carrying out high-cell-density induction to balance between culture productivity and product quality.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Rituximab/biossíntese , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Rituximab/isolamento & purificação
11.
Biochemistry ; 56(29): 3818-3825, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28665588

RESUMO

The causative agent of tuberculosis, Mycobacterium tuberculosis, is a bacterium with a complex cell wall and a complicated life cycle. The genome of M. tuberculosis contains well over 4000 genes thought to encode proteins. One of these codes for a putative enzyme referred to as Rv3404c, which has attracted research attention as a potential virulence factor for over 12 years. Here we demonstrate that Rv3404c functions as a sugar N-formyltransferase that converts dTDP-4-amino-4,6-dideoxyglucose into dTDP-4-formamido-4,6-dideoxyglucose using N10-formyltetrahydrofolate as the carbon source. Kinetic analyses demonstrate that Rv3404c displays a significant catalytic efficiency of 1.1 × 104 M-1 s-1. In addition, we report the X-ray structure of a ternary complex of Rv3404c solved in the presence of N5-formyltetrahydrofolate and dTDP-4-amino-4,6-dideoxyglucose. The final model of Rv3404c was refined to an overall R-factor of 16.8% at 1.6 Å resolution. The results described herein are especially intriguing given that there have been no published reports of N-formylated sugars associated with M. tuberculosis. The data thus provide a new avenue of research into this fascinating, yet deadly, organism that apparently has been associated with human infection since ancient times.


Assuntos
Proteínas de Bactérias/química , Hidroximetil e Formil Transferases/química , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Fatores de Virulência/química , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Desoxiaçúcares/química , Desoxiaçúcares/metabolismo , Formiltetra-Hidrofolatos/química , Formiltetra-Hidrofolatos/metabolismo , Hidroximetil e Formil Transferases/metabolismo , Cinética , Mycobacterium tuberculosis/patogenicidade , Nucleotídeos de Timina/química , Nucleotídeos de Timina/metabolismo , Fatores de Virulência/metabolismo
12.
J Biol Chem ; 291(46): 24085-24095, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27601469

RESUMO

Aberrant glycosylation and the overexpression of specific carbohydrate epitopes is a hallmark of many cancers, and tumor-associated oligosaccharides are actively investigated as targets for immunotherapy and diagnostics. Wisteria floribunda agglutinin (WFA) is a legume lectin that recognizes terminal N-acetylgalactosaminides with high affinity. WFA preferentially binds the disaccharide LacdiNAc (ß-d-GalNAc-[1→4]-d-GlcNAc), which is associated with tumor malignancy in leukemia, prostate, pancreatic, ovarian, and liver cancers and has shown promise in cancer glycobiomarker detection. The mechanism of specificity for WFA recognition of LacdiNAc is not fully understood. To address this problem, we have determined affinities and structure of WFA in complex with GalNAc and LacdiNAc. Affinities toward Gal, GalNAc, and LacdiNAc were measured via surface plasmon resonance, yielding KD values of 4.67 × 10-4 m, 9.24 × 10-5 m, and 5.45 × 10-6 m, respectively. Structures of WFA in complex with LacdiNAc and GalNAc have been determined to 1.80-2.32 Å resolution. These high resolution structures revealed a hydrophobic groove complementary to the GalNAc and, to a minor extent, to the back-face of the GlcNAc sugar ring. Remarkably, the contribution of this small hydrophobic surface significantly increases the observed affinity for LacdiNAc over GalNAc. Tandem MS sequencing confirmed the presence of two isolectin forms in commercially available WFA differing only in the identities of two amino acids. Finally, the WFA carbohydrate binding site is similar to a homologous lectin isolated from Vatairea macrocarpa in complex with GalNAc, which, unlike WFA, binds not only αGalNAc but also terminal Ser/Thr O-linked αGalNAc (Tn antigen).


Assuntos
Biomarcadores Tumorais/química , Lactose/análogos & derivados , Lectinas de Plantas/química , Wisteria/química , Cristalografia por Raios X , Humanos , Lactose/química , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína
13.
Glycobiology ; 27(4): 358-369, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096310

RESUMO

The Gram-negative bacterium Campylobacter jejuni 81116 (Penner serotype HS:6) has a class E lipooligosaccharide (LOS) biosynthesis locus containing 19 genes, which encode for 11 putative glycosyltransferases, 1 lipid A acyltransferase and 7 enzymes thought to be involved in the biosynthesis of dideoxyhexosamine (ddHexN) moieties. Although the LOS outer core structure of C. jejuni 81116 is still unknown, recent mass spectrometry analyses suggest that it contains acetylated forms of two ddHexN residues. For this investigation, five of the genes encoding enzymes reportedly involved in the biosyntheses of these sugar residues were examined, rmlA, rmlB, wlaRA, wlaRB and wlaRG. Specifically, these genes were cloned and expressed in Escherichia coli, and the corresponding enzymes were purified and tested for biochemical activity. Here we present data demonstrating that RmlA functions as a glucose-1-phosphate thymidylyltransferase and that RmlB is a thymidine diphosphate (dTDP)-glucose 4,6-dehydratase. We also show, through nuclear magnetic resonance spectroscopy and mass spectrometry analyses, that WlaRG, when utilized in coupled assays with either WlaRA or WlaRB and dTDP-4-keto-6-deoxyglucose, results in the production of either dTDP-3-amino-3,6-dideoxy-d-galactose (dTDP-Fuc3N) or dTDP-3-amino-3,6-dideoxy-d-glucose (dTDP-Qui3N), respectively. In addition, the X-ray crystallographic structures of the 3,4-ketoisomerases, WlaRA and WlaRB, were determined to 2.14 and 2.0 Å resolutions, respectively. Taken together, the data reported herein demonstrate that C. jejuni 81116 utilizes five enzymes to synthesize dTDP-Fuc3N or dTDP-Qui3N and that WlaRG, an aminotransferase, can function on sugars with differing stereochemistry about their C-4' carbons. Importantly, the data reveal that C. jejuni 81116 has the ability to synthesize two isomeric ddHexN forms.


Assuntos
Aciltransferases/genética , Campylobacter jejuni/genética , Galactose/genética , Glicosiltransferases/genética , Nucleotidiltransferases/genética , Aciltransferases/química , Aciltransferases/metabolismo , Vias Biossintéticas/genética , Campylobacter jejuni/enzimologia , Cristalografia por Raios X , Escherichia coli/genética , Galactose/química , Galactose/metabolismo , Glucose/química , Glucose/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Nucleotídeos de Timina/química , Nucleotídeos de Timina/metabolismo
14.
Sante Ment Que ; 42(1): 243-271, 2017.
Artigo em Francês | MEDLINE | ID: mdl-28792571

RESUMO

Objective The objectives of this review were to identify and compare major international initiatives aiming to integrate mental health services in primary care and to summarize the lessons learned for similar integration efforts in the province of Quebec, Canada.Methods We conducted a narrative review of the literature guided by a conceptual framework drawn from the literature on integrated care. We identified relevant initiatives to support primary mental health care integration through Pubmed searches and through previous systematic reviews on this topic. We then selected those initiatives that provided sufficient details on their key characteristics, outcomes, and implementation issues (e.g. barriers, facilitators). We focused our analysis on large-scale initiatives as these offered the most potential for impacts on population mental health. This process resulted in the selection of 20 initiatives that were described in 153 articles and reports. Our synthesis was guided by our conceptual framework, which distinguishes between five types of integration, namely clinical, professional, organizational, systemic and functional integration.Results Of the 20 primary mental health care integration initiatives, 3 targeted youth, 14 targeted adults or multiple age groups, and 3 were targeted towards seniors. Most initiatives aimed to implement collaborative care models for common mental disorders in primary care. Other initiatives focused on co-locating mental health professionals in primary care, supporting the emergence of a diversity of integration projects led by community-based primary care practices, or the merger of primary care and mental health organizations. Most initiatives were based on clinical, professional and functional integration strategies. Across initiatives, a range of positive outcomes were reported, notably to the accessibility and quality of services, the satisfaction of patients and providers, the costs of services, and impacts on patients' health and quality of life. Integration initiatives encountered many common barriers to implementation. However, steps taken to properly prepare and execute the implementation process, as well as ensure the sustainability of initiatives, helped initiative leaders to overcome certain barriers. The lessons for Quebec include the need to continue to reinforce evidence-based models of collaborative mental health care in primary care and promote a culture of continuous quality improvement and a more widespread use of information technologies that can support integrated care.Conclusion This review shows that integrating mental health services into primary care is a complex process that depends on a variety of strategies occurring at multiple levels of the healthcare system. However, it is also a unifying process that holds much potential to significantly impact the mental health and well-being of populations.


Assuntos
Prestação Integrada de Cuidados de Saúde , Serviços de Saúde Mental/organização & administração , Atenção Primária à Saúde/organização & administração , Humanos , Modelos Organizacionais , Quebeque
15.
Biochemistry ; 54(29): 4495-506, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26125548

RESUMO

3-Acetamido-3,6-dideoxy-d-galactose (Fuc3NAc) and 3-acetamido-3,6-dideoxy-d-glucose (Qui3NAc) are unusual sugars found on the lipopolysaccharides of Gram-negative bacteria and on the S-layers of Gram-positive bacteria. The 3,4-ketoisomerases, referred to as FdtA and QdtA, catalyze the third steps in the respective biosynthetic pathways for these sugars. Whereas both enzymes utilize the same substrate, the stereochemistries of their products are different. Specifically, the hydroxyl groups at the hexose C-4' positions assume the "galactose" and "glucose" configurations in the FdtA and QdtA products, respectively. In 2007 we reported the structure of the apoform of FdtA from Aneurinibacillus thermoaerophilus, which was followed in 2014 by the X-ray analysis of QdtA from Thermoanaerobacterium thermosaccharolyticum as a binary complex. Both of these enzymes belong to the cupin superfamily. Here we report a combined structural and enzymological study to explore the manner in which these enzymes control the stereochemistry of their products. Various site-directed mutant proteins of each enzyme were constructed, and their dTDP-sugar products were analyzed by NMR spectroscopy. In addition, the kinetic parameters for these protein variants were measured, and the structure of one, namely, the QdtA Y17R/R97H double mutant form, was determined to 2.3-Å resolution. Finally, in an attempt to obtain a model of FdtA with a bound dTDP-linked sugar, the 3,4-ketoisomerase domain of a bifunctional enzyme from Shewanella denitrificans was cloned, purified, and crystallized in the presence of a dTDP-linked sugar analogue. Taken together, the results from this investigation demonstrate that it is possible to convert a "galacto" enzyme into a "gluco" enzyme and vice versa.


Assuntos
Aldose-Cetose Isomerases/química , Proteínas de Bactérias/química , Sequência de Aminoácidos , Bacillales/enzimologia , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Cinética , Modelos Moleculares , Shewanella/enzimologia , Estereoisomerismo
16.
Glycobiology ; 25(7): 767-73, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25840968

RESUMO

Legionaminic acids (Leg) are bacterial analogs of neuraminic acid, with the same stereochemistry but different substituents at C5, C7 and C9. Hence they may be incorporated into useful analogs of sialoglycoconjugates, and we previously reported two sialyltransferases that could utilize cytidine monophosphate (CMP)-Leg5Ac7Ac for preparation of Leg glycoconjugates, which were resistant to sialidases [Watson DC, Leclerc S, Wakarchuk WW, Young NM. 2011. Enzymatic synthesis and properties of glycoconjugates with legionaminic acid as a replacement for neuraminic acid. Glycobiology. 21:99-108.]. These were the porcine ST3Gal1 and Pasteurella multocida sialyltransferases. We now report two additional sialyltransferases with superior Leg-transferase properties to the previous two. These are (i) a truncated form of a Photobacterium α2,6-sialyltransferase with an Ala-Met mutation in its active site, and (ii) an α2,3-sialyltransferase from Neisseria meningitidis MC58 with a higher transferase activity than the P. multocida enzyme, with either CMP-Neu5Ac or CMP-Leg5Ac7Ac as the donor. These enzymes will enable the production of useful Leg5Ac7Ac glycoconjugate derivatives with either α2,6 or α2,3 linkages and unique biological properties.


Assuntos
Glicoconjugados/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Animais , Configuração de Carboidratos , Glicoconjugados/química , Modelos Moleculares , Mutação , Pasteurella multocida/enzimologia , Photobacterium/enzimologia , Suínos
17.
J Virol ; 88(11): 6100-11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24648448

RESUMO

UNLABELLED: Human polyomavirus 9 (HPyV9) is a closely related homologue of simian B-lymphotropic polyomavirus (LPyV). In order to define the architecture and receptor binding properties of HPyV9, we solved high-resolution crystal structures of its major capsid protein, VP1, in complex with three putative oligosaccharide receptors identified by glycan microarray screening. Comparison of the properties of HPyV9 VP1 with the known structure and glycan-binding properties of LPyV VP1 revealed that both viruses engage short sialylated oligosaccharides, but small yet important differences in specificity were detected. Surprisingly, HPyV9 VP1 preferentially binds sialyllactosamine compounds terminating in 5-N-glycolyl neuraminic acid (Neu5Gc) over those terminating in 5-N-acetyl neuraminic acid (Neu5Ac), whereas LPyV does not exhibit such a preference. The structural analysis demonstrated that HPyV9 makes specific contacts, via hydrogen bonds, with the extra hydroxyl group present in Neu5Gc. An equivalent hydrogen bond cannot be formed by LPyV VP1. IMPORTANCE: The most common sialic acid in humans is 5-N-acetyl neuraminic acid (Neu5Ac), but various modifications give rise to more than 50 different sialic acid variants that decorate the cell surface. Unlike most mammals, humans cannot synthesize the sialic acid variant 5-N-glycolyl neuraminic acid (Neu5Gc) due to a gene defect. Humans can, however, still acquire this compound from dietary sources. The role of Neu5Gc in receptor engagement and in defining viral tropism is only beginning to emerge, and structural analyses defining the differences in specificity for Neu5Ac and Neu5Gc are still rare. Using glycan microarray screening and high-resolution protein crystallography, we have examined the receptor specificity of a recently discovered human polyomavirus, HPyV9, and compared it to that of the closely related simian polyomavirus LPyV. Our study highlights critical differences in the specificities of both viruses, contributing to an enhanced understanding of the principles that underlie pathogen selectivity for modified sialic acids.


Assuntos
Proteínas do Capsídeo/química , Modelos Moleculares , Ácidos Neuramínicos/metabolismo , Polyomavirus/química , Polyomavirus/genética , Conformação Proteica , Proteínas do Capsídeo/metabolismo , Clonagem Molecular , Cristalografia , Humanos , Ligação de Hidrogênio , Análise em Microsséries , Polissacarídeos
18.
Glycoconj J ; 32(9): 729-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26452603

RESUMO

Legionaminic acids are analogs of sialic acid that occur in several bacteria. The most commonly occurring form is Leg5Ac7Ac, which differs from Neu5Ac only at the C7 (acetamido) and C9 (deoxy) positions. While these differences greatly reduce the susceptibility of Leg compounds to sialidases, several sialyltransferases have been identified that can use CMP-Leg5Ac7Ac as a donor (Watson et al. 2011). We report the successful modification with Leg5Ac7Ac of a glycolipid, GM1a, and two glycoproteins, interferon-α2b and α1-antitrypsin, by means of two mammalian sialyltransferases, namely porcine ST3Gal1 and human ST6Gal1. The Leg5Ac7Ac form of GD1a was not recognized by the myelin-associated glycoprotein (MAG, Siglec-4), confirming the importance of the glycerol moiety in the interaction of sialo-glycans with Siglecs.


Assuntos
Ácidos Siálicos/química , Sialiltransferases/química , Animais , Gangliosídeo G(M1)/química , Gangliosídeo G(M1)/metabolismo , Humanos , Interferon-alfa/química , Interferon-alfa/metabolismo , Glicoproteína Associada a Mielina/química , Glicoproteína Associada a Mielina/metabolismo , Ligação Proteica , Sialiltransferases/metabolismo , Suínos , alfa 1-Antitripsina/química , alfa 1-Antitripsina/metabolismo
19.
J Biol Chem ; 288(1): 247-54, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23184955

RESUMO

Enzymatic addition of GalNAc to isotopically labeled IFNα2a produced in Escherichia coli yielded the O-linked glycoprotein GalNAcα-[(13)C,(15)N]IFNα2a. The three-dimensional structure of GalNAcα-IFNα2a has been determined in solution by NMR spectroscopy at high resolution. Proton-nitrogen heteronuclear Overhauser enhancement measurements revealed that the addition of a single monosaccharide unit at Thr-106 significantly slowed motions of the glycosylation loop on the nanosecond time scale. Subsequent addition of a Gal unit produced Gal(ß1,3)GalNAcα-[(13)C,(15)N]IFNα2a. This extension resulted in a further decrease in the dynamics of this loop. The methodology used here allowed the first such description of the structure and dynamics of an O-glycoprotein and opens the way to the study of this class of proteins.


Assuntos
Acetilgalactosamina/química , Interferon-alfa/metabolismo , Polissacarídeos/química , Treonina/química , Acetilgalactosamina/genética , Biologia Computacional/métodos , Dissulfetos/química , Escherichia coli/metabolismo , Glicoproteínas/química , Glicosilação , Humanos , Interferon alfa-2 , Interferons/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Conformação Proteica , Proteínas Recombinantes/metabolismo
20.
PLoS Pathog ; 8(7): e1002738, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22910713

RESUMO

The recently discovered human Merkel cell polyomavirus (MCPyV or MCV) causes the aggressive Merkel cell carcinoma (MCC) in the skin of immunocompromised individuals. Conflicting reports suggest that cellular glycans containing sialic acid (Neu5Ac) may play a role in MCPyV infectious entry. To address this question, we solved X-ray structures of the MCPyV major capsid protein VP1 both alone and in complex with several sialylated oligosaccharides. A shallow binding site on the apical surface of the VP1 capsomer recognizes the disaccharide Neu5Ac-α2,3-Gal through a complex network of interactions. MCPyV engages Neu5Ac in an orientation and with contacts that differ markedly from those observed in other polyomavirus complexes with sialylated receptors. Mutations in the Neu5Ac binding site abolish MCPyV infection, highlighting the relevance of the Neu5Ac interaction for MCPyV entry. Our study thus provides a powerful platform for the development of MCPyV-specific vaccines and antivirals. Interestingly, engagement of sialic acid does not interfere with initial attachment of MCPyV to cells, consistent with a previous proposal that attachment is mediated by a class of non-sialylated carbohydrates called glycosaminoglycans. Our results therefore suggest a model in which sialylated glycans serve as secondary, post-attachment co-receptors during MCPyV infectious entry. Since cell-surface glycans typically serve as primary attachment receptors for many viruses, we identify here a new role for glycans in mediating, and perhaps even modulating, post-attachment entry processes.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Glicosaminoglicanos/metabolismo , Poliomavírus das Células de Merkel/química , Poliomavírus das Células de Merkel/fisiologia , Ácido N-Acetilneuramínico/metabolismo , Sítios de Ligação , Proteínas do Capsídeo/genética , Linhagem Celular , Cristalografia por Raios X , DNA Viral/genética , Mapeamento de Epitopos , Glicosaminoglicanos/química , Humanos , Poliomavírus das Células de Merkel/genética , Modelos Moleculares , Mutação , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Infecções por Polyomavirus/virologia , Conformação Proteica , Receptores Virais/metabolismo , Ligação Viral , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA