Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38180829

RESUMO

Forecasting the interaction between compounds and proteins is crucial for discovering new drugs. However, previous sequence-based studies have not utilized three-dimensional (3D) information on compounds and proteins, such as atom coordinates and distance matrices, to predict binding affinity. Furthermore, numerous widely adopted computational techniques have relied on sequences of amino acid characters for protein representations. This approach may constrain the model's ability to capture meaningful biochemical features, impeding a more comprehensive understanding of the underlying proteins. Here, we propose a two-step deep learning strategy named MulinforCPI that incorporates transfer learning techniques with multi-level resolution features to overcome these limitations. Our approach leverages 3D information from both proteins and compounds and acquires a profound understanding of the atomic-level features of proteins. Besides, our research highlights the divide between first-principle and data-driven methods, offering new research prospects for compound-protein interaction tasks. We applied the proposed method to six datasets: Davis, Metz, KIBA, CASF-2016, DUD-E and BindingDB, to evaluate the effectiveness of our approach.


Assuntos
Aminoácidos , Mapeamento de Interação de Proteínas , Conformação Proteica , Ligação Proteica
2.
Bioinformatics ; 40(Supplement_1): i369-i380, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940143

RESUMO

MOTIVATION: Molecular core structures and R-groups are essential concepts in drug development. Integration of these concepts with conventional graph pre-training approaches can promote deeper understanding in molecules. We propose MolPLA, a novel pre-training framework that employs masked graph contrastive learning in understanding the underlying decomposable parts in molecules that implicate their core structure and peripheral R-groups. Furthermore, we formulate an additional framework that grants MolPLA the ability to help chemists find replaceable R-groups in lead optimization scenarios. RESULTS: Experimental results on molecular property prediction show that MolPLA exhibits predictability comparable to current state-of-the-art models. Qualitative analysis implicate that MolPLA is capable of distinguishing core and R-group sub-structures, identifying decomposable regions in molecules and contributing to lead optimization scenarios by rationally suggesting R-group replacements given various query core templates. AVAILABILITY AND IMPLEMENTATION: The code implementation for MolPLA and its pre-trained model checkpoint is available at https://github.com/dmis-lab/MolPLA.


Assuntos
Software , Aprendizado de Máquina , Estrutura Molecular , Algoritmos , Desenvolvimento de Medicamentos/métodos
3.
Bioinformatics ; 39(39 Suppl 1): i448-i457, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387164

RESUMO

MOTIVATION: Protein-ligand binding affinity prediction is a central task in drug design and development. Cross-modal attention mechanism has recently become a core component of many deep learning models due to its potential to improve model explainability. Non-covalent interactions (NCIs), one of the most critical domain knowledge in binding affinity prediction task, should be incorporated into protein-ligand attention mechanism for more explainable deep drug-target interaction models. We propose ArkDTA, a novel deep neural architecture for explainable binding affinity prediction guided by NCIs. RESULTS: Experimental results show that ArkDTA achieves predictive performance comparable to current state-of-the-art models while significantly improving model explainability. Qualitative investigation into our novel attention mechanism reveals that ArkDTA can identify potential regions for NCIs between candidate drug compounds and target proteins, as well as guiding internal operations of the model in a more interpretable and domain-aware manner. AVAILABILITY: ArkDTA is available at https://github.com/dmis-lab/ArkDTA. CONTACT: kangj@korea.ac.kr.


Assuntos
Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA