Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
RNA ; 30(8): 1070-1088, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38688558

RESUMO

The recognition of the 5' splice site (5' ss) is one of the earliest steps of pre-mRNA splicing. To better understand, the mechanism and regulation of 5' ss recognition, we selectively humanized components of the yeast U1 (yU1) snRNP to reveal the function of these components in 5' ss recognition and splicing. We targeted U1C and Luc7, two proteins that interact with and stabilize the yU1 snRNA and the 5' ss RNA duplex. We replaced the zinc-finger (ZnF) domain of yeast U1C (yU1C) with its human counterpart, which resulted in a cold-sensitive growth phenotype and moderate splicing defects. We next added an auxin-inducible degron to yeast Luc7 (yLuc7) protein (to mimic the lack of Luc7Ls in human U1 snRNP). We found that Luc7-depleted yU1 snRNP resulted in the concomitant loss of Prp40 and Snu71 (two other essential yU1 snRNP proteins), and further biochemical analyses suggest a model of how these three proteins interact with each other in the U1 snRNP. The loss of these proteins resulted in a significant growth retardation accompanied by a global suppression of pre-mRNA splicing. The splicing suppression led to mitochondrial dysfunction as revealed by a release of Fe2+ into the growth medium and an induction of mitochondrial reactive oxygen species. Together, these observations indicate that the human U1C ZnF can substitute that of yeast, Luc7 is essential for the incorporation of the Luc7-Prp40-Snu71 trimer into yU1 snRNP, and splicing plays a major role in the regulation of mitochondrial function in yeast.


Assuntos
Mitocôndrias , Precursores de RNA , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U1 , Saccharomyces cerevisiae , Precursores de RNA/metabolismo , Precursores de RNA/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Splice de RNA , Saccharomycetales/genética , Saccharomycetales/metabolismo
2.
J Biol Chem ; 297(2): 100951, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34252458

RESUMO

The human apolipoprotein L gene family encodes the apolipoprotein L1-6 (APOL1-6) proteins, which are effectors of the innate immune response to viruses, bacteria and protozoan parasites. Due to a high degree of similarity between APOL proteins, it is often assumed that they have similar functions to APOL1, which forms cation channels in planar lipid bilayers and membranes resulting in cytolytic activity. However, the channel properties of the remaining APOL proteins have not been reported. Here, we used transient overexpression and a planar lipid bilayer system to study the function of APOL proteins. By measuring lactate dehydrogenase release, we found that APOL1, APOL3, and APOL6 were cytolytic, whereas APOL2, APOL4, and APOL5 were not. Cells expressing APOL1 or APOL3, but not APOL6, developed a distinctive swollen morphology. In planar lipid bilayers, recombinant APOL1 and APOL2 required an acidic environment for the insertion of each protein into the membrane bilayer to form an ion conductance channel. In contrast, recombinant APOL3, APOL4, and APOL5 readily inserted into bilayers to form ion conductance at neutral pH, but required a positive voltage on the side of insertion. Despite these differences in membrane insertion properties, the ion conductances formed by APOL1-4 were similarly pH-dependent and cation-selective, consistent with conservation of the pore-lining region in each protein. Thus, despite structural conservation, the APOL proteins are functionally different. We propose that these proteins interact with different membranes and under different voltage and pH conditions within a cell to effect innate immunity to different microbial pathogens.


Assuntos
Apolipoproteína L1 , Membrana Celular/metabolismo , Imunidade Inata , Bicamadas Lipídicas/metabolismo
3.
J Biol Chem ; 297(3): 101009, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331942

RESUMO

Apolipoprotein L-I (APOL1) is a channel-forming effector of innate immunity. The common human APOL1 variant G0 provides protection against infection with certain Trypanosoma and Leishmania parasite species, but it cannot protect against the trypanosomes responsible for human African trypanosomiasis. Human APOL1 variants G1 and G2 protect against human-infective trypanosomes but also confer a higher risk of developing chronic kidney disease. Trypanosome-killing activity is dependent on the ability of APOL1 to insert into membranes at acidic pH and form pH-gated cation channels. We previously mapped the channel's pore-lining region to the C-terminal domain (residues 332-398) and identified a membrane-insertion domain (MID, residues 177-228) that facilitates acidic pH-dependent membrane insertion. In this article, we further investigate structural determinants of cation channel formation by APOL1. Using a combination of site-directed mutagenesis and targeted chemical modification, our data indicate that the C-terminal heptad-repeat sequence (residues 368-395) is a bona fide leucine zipper domain (ZIP) that is required for cation channel formation as well as lysis of trypanosomes and mammalian cells. Using protein-wide cysteine-scanning mutagenesis, coupled with the substituted cysteine accessibility method, we determined that, in the open channel state, both the N-terminal domain and the C-terminal ZIP domain are exposed on the intralumenal/extracellular side of the membrane and provide evidence that each APOL1 monomer contributes four transmembrane domains to the open cation channel conformation. Based on these data, we propose an oligomeric topology model in which the open APOL1 cation channel is assembled from the coiled-coil association of C-terminal ZIP domains.


Assuntos
Apolipoproteína L1/metabolismo , Canais Iônicos/química , Zíper de Leucina , Apolipoproteína L1/química , Cátions/metabolismo , Humanos , Conformação Proteica , Domínios Proteicos
4.
Arthritis Rheum ; 65(12): 3120-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24022118

RESUMO

OBJECTIVE: ANXA6, the gene for annexin A6, is highly expressed in osteoarthritic (OA) articular chondrocytes but not in healthy articular chondrocytes. This study was undertaken to determine whether annexin A6 affects catabolic events in these cells. METHODS: Articular chondrocytes were isolated from Anxa6-knockout mice, wild-type (WT) mice, and human articular cartilage in which ANXA6 was overexpressed. Cells were treated with interleukin-1ß (IL-1ß) or tumor necrosis factor α (TNFα), and expression of catabolic genes and activation of NF-κB were determined by real-time polymerase chain reaction and luciferase reporter assay. Anxa6(-/-) and WT mouse knee joints were injected with IL-1ß or the medial collateral ligament was transected and partial resection of the medial meniscus was performed to determine the role of Anxa6 in IL-1ß-mediated cartilage destruction and OA progression. The mechanism by which Anxa6 stimulates NF-κB activity was determined by coimmunoprecipitation and immunoblot analysis of nuclear and cytoplasmic fractions of IL-1ß-treated Anxa6(-/-) and WT mouse chondrocytes for p65 and Anxa6. RESULTS: Loss of Anxa6 resulted in decreased NF-κB activation and catabolic marker messenger RNA (mRNA) levels in IL-1ß- or TNFα-treated articular chondrocytes, whereas overexpression of ANXA6 resulted in increased NF-κB activity and catabolic marker mRNA levels. Annexin A6 interacted with p65, and loss of Anxa6 caused decreased nuclear translocation and retention of the active p50/p65 NF-κB complex. Cartilage destruction in Anxa6(-/-) mouse knee joints after IL-1ß injection or partial medial meniscectomy was reduced as compared to that in WT mouse joints. CONCLUSION: Our data define a role of annexin A6 in the modulation of NF-κB activity and in the stimulation of catabolic events in articular chondrocytes.


Assuntos
Anexina A6/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Idoso , Animais , Anexina A6/genética , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/farmacologia , Articulação do Joelho/citologia , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/metabolismo , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/farmacologia
5.
Mol Microbiol ; 84(3): 501-15, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22486809

RESUMO

Streptomyces coelicolor is a morphologically complex bacterium requiring the secretion of surface-active proteins to progress through its life cycle. SapB represents an important class of these biosurfactants, as illustrated by its ability to restore aerial hyphae formation when applied exogenously to developmental mutants. However, such aerial hyphae fail to sporulate, exemplifying the need to co-ordinate the timing of SapB production with other developmental events. SapB has an unusual lantibiotic structure. Its structural gene, ramS, is only 38 nucleotides downstream of the gene encoding its putative modification enzyme, RamC. Transient, co-ordinated expression of the operon was thought to be controlled by the response regulator RamR. However, we show that ramS is transcribed throughout the cell cycle with a dual expression profile dissimilar to the tightly controlled ramC expression. Surprisingly, post-translational modification relies on prior membrane localization of the precursor peptide, RamS, as demonstrated by the absence of RamS modification in S. coelicolor hyphae treated with the Bacillus subtilis lipoprotein surfactin. Our results demonstrate that interspecies interaction can also be mediated by interference of post-translational events. Further, temporal and spatial regulation of irreversible post-translational modification of a surface-active morphogenetic peptide suggests a new model for the control of key developmental events.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Peptídeos/genética , Streptomyces coelicolor/metabolismo , Proteínas de Bactérias/metabolismo , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Óperon , Peptídeos/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento
6.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168357

RESUMO

The recognition of 5' splice site (5' ss) is one of the earliest steps of pre-mRNA splicing. To better understand the mechanism and regulation of 5' ss recognition, we selectively humanized components of the yeast U1 snRNP to reveal the function of these components in 5' ss recognition and splicing. We targeted U1C and Luc7, two proteins that interact with and stabilize the yeast U1 (yU1) snRNA and the 5' ss RNA duplex. We replaced the Zinc-Finger (ZnF) domain of yU1C with its human counterpart, which resulted in cold-sensitive growth phenotype and moderate splicing defects. Next, we added an auxin-inducible degron to yLuc7 protein and found that Luc7-depleted yU1 snRNP resulted in the concomitant loss of PRP40 and Snu71 (two other essential yeast U1 snRNP proteins), and further biochemical analyses suggest a model of how these three proteins interact with each other in the U1 snRNP. The loss of these proteins resulted in a significant growth retardation accompanied by a global suppression of pre-mRNA splicing. The splicing suppression led to mitochondrial dysfunction as revealed by a release of Fe 2+ into the growth medium and an induction of mitochondrial reactive oxygen species. Together, these observations indicate that the human U1C ZnF can substitute that of yeast, Luc7 is essential for the incorporation of the Luc7-Prp40-Snu71 trimer into yeast U1 snRNP, and splicing plays a major role in the regulation of mitochondria function in yeast.

7.
Elife ; 92020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427098

RESUMO

Recently evolved alleles of Apolipoprotein L-1 (APOL1) provide increased protection against African trypanosome parasites while also significantly increasing the risk of developing kidney disease in humans. APOL1 protects against trypanosome infections by forming ion channels within the parasite, causing lysis. While the correlation to kidney disease is robust, there is little consensus concerning the underlying disease mechanism. We show in human cells that the APOL1 renal risk variants have a population of active channels at the plasma membrane, which results in an influx of both Na+ and Ca2+. We propose a model wherein APOL1 channel activity is the upstream event causing cell death, and that the activate-state, plasma membrane-localized channel represents the ideal drug target to combat APOL1-mediated kidney disease.


Assuntos
Apolipoproteína L1/metabolismo , Citotoxinas/metabolismo , Canais Iônicos/metabolismo , Nefropatias/metabolismo , Animais , Apolipoproteína L1/genética , Células CHO , Morte Celular , Membrana Celular/metabolismo , Cricetulus , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Nefropatias/etiologia , Microscopia de Fluorescência , Potássio/metabolismo , Fatores de Risco , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA