Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607952

RESUMO

Humans have made such dramatic and permanent changes to Earth's landscapes that much of it is now substantially and irreversibly altered from its preanthropogenic state. Remote islands, until recently isolated from humans, offer insights into how these landscapes evolved in response to human-induced perturbations. However, little is known about when and how remote systems were colonized because archaeological data and historical records are scarce and incomplete. Here, we use a multiproxy approach to reconstruct the initial colonization and subsequent environmental impacts on the Azores Archipelago. Our reconstructions provide unambiguous evidence for widespread human disturbance of this archipelago starting between 700-60+50 and 850-60+60 Common Era (CE), ca. 700 y earlier than historical records suggest the onset of Portuguese settlement of the islands. Settlement proceeded in three phases, during which human pressure on the terrestrial and aquatic ecosystems grew steadily (i.e., through livestock introductions, logging, and fire), resulting in irreversible changes. Our climate models suggest that the initial colonization at the end of the early Middle Ages (500 to 900 CE) occurred in conjunction with anomalous northeasterly winds and warmer Northern Hemisphere temperatures. These climate conditions likely inhibited exploration from southern Europe and facilitated human settlers from the northeast Atlantic. These results are consistent with recent archaeological and genetic data suggesting that the Norse were most likely the earliest settlers on the islands.


Assuntos
Ecossistema , Meio Ambiente , Atividades Humanas , Migração Humana , Agricultura , Açores , Mudança Climática , Modelos Climáticos , Fezes/química , Humanos
3.
Sci Total Environ ; 830: 154828, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35346708

RESUMO

A multiproxy approach was applied to a sediment core retrieved from the deep crater Lake Funda, located in the middle of the North Atlantic Ocean on Flores Island, Azores archipelago (Portugal). The purpose of this study was to determine how this ecosystem responded to natural and anthropogenic forces over the last millennium. We distinguished three main phases in lake evolution using multiproxy reconstructions and documentary sources. (A) Climate and lake catchment processes, as well as internal ones, were the main drivers of ecosystem variability before 1335 CE, when human disturbances were absent in the Lake Funda catchment. (B) The second phase is marked by unprecedented changes in all studied proxies between 1335 and 1560 CE, including abrupt changes in the composition and diversity of diatom and chironomid assemblages. Synergistic effects from high climate variability and the onset of human disturbances in the catchment (e.g., introduction of livestock) during the Medieval Climate Anomaly-Little Ice Age transition, led to an increase in lake trophic state from mesotrophic to eutrophic conditions. (C) In the last phase (1560 CE to the present), the eutrophic conditions in Lake Funda were maintained through a positive feedback loop between lake productivity and in-lake phosphorous recycling. Variability within the lake ecosystem was mainly associated with climate variability and internal lake dynamics (e.g., phosphorus remobilization). Our results show that a paleoecological approach is crucial to understanding lake ecological states in the present-day in order to develop locally adapted management and restoration strategies. A long-term perspective enables us to understand the harmful consequences of ongoing climate change and human disturbances on lake ecosystems.


Assuntos
Diatomáceas , Ecossistema , Efeitos Antropogênicos , Mudança Climática , Humanos , Lagos
4.
Sci Total Environ ; 768: 144352, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33454472

RESUMO

Seagrasses are distributed all along the coast of the Mediterranean Sea being Posidonia oceanica and Cymodocea nodosa the most common species. They promote sedimentation, leading to the formation of well-structured soils. Over the last decade, a growing attention has been paid to their role as CO2 sinks in the form of organic carbon (Corg) and to their use as environmental archives. However, most of the knowledge about pedogenetic processes in these soils refer to the rhizosphere. This study aims to understand seagrass soils biogeochemistry in the rhizosphere and below, which in turn can help to understand their long term formation processes. Fifteen cores were strategically sampled along a 350 km stretch of the Southeast Iberian coast, and analyzed for elemental composition (XRF core-scanning), magnetic susceptibility, Corg content and gran size distribution. The cores were dated by 210Pb and 14C-AMS techniques to estimate soil accretion. Principal component analysis was used to explore the main geochemical processes linked to soil formation. The results showed that terrestrial runoff plays a key role in meadow soil composition. Furthermore, Corg accumulation did not follow any general depth trend in our soil records, suggesting that temporal variation in Corg inputs is an important factor in determining carbon depth distribution within the soil. We obtained evidence that the establishment of well-developed, stable C. nodosa meadows in the Mediterranean Sea may be promoted by adverse environmental conditions to P. oceanica settlement. Metal's behavior within the meadow deposit and their interaction with organic matter and carbonates is unclear. The results presented in this paper highlight the importance of the influence of land-based inputs in the characteristics of seagrass meadow deposits, highly determining their Corg content, as well as the need for further studies on metal behavior, to understand their full potential as environmental records.


Assuntos
Alismatales , Solo , Carbono , Sedimentos Geológicos , Mar Mediterrâneo
5.
Sci Rep ; 10(1): 5864, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246086

RESUMO

Human activities have profoundly altered the global nutrient cycle through Land Use and Cover Changes (LUCCs) since the industrial revolution and especially during the Great Acceleration (1950 CE). Yet, the impact of such activities on terrestrial and aquatic ecosystems above their ecological baselines are not well known, especially when considering the response of these systems to the intensity of LUCCs on nutrient cycles. Here, we used a multiproxy approach (sedimentological, geochemical and isotopic analyses, historical records, climate data, and satellite images) to evaluate the role that LUCCs have on Nitrogen (N) cycling in a coastal mediterranean watershed system of central Chile over the last two centuries. Despite long-term anthropogenic use (agriculture, cattle grazing) in the Matanzas watershed- lake system, these LUCC appear to have had little impact on nutrient and organic matter transfer since the Spanish Colonial period. In contrast, the largest changes in N dynamics occurred in the mid-1970s, driven by the replacement of native forests and grasslands by government-subsidized tree plantations of introduced Monterey pine (Pinus radiata) and eucalyptus (Eucalyptus globulus). These LUCC had major impacts on the transfer of organic matter (which increased by 9.4%) and nutrients (as revealed by an increase in total N) to Laguna Matanzas. Our study shows that the presence of anthropogenic land use/cover changes do not necessarily alter nutrient supply and N availability per se but rather it is the magnitude and intensity of such changes that produce major impact on these processes in these mediterranean watersheds.

6.
Sci Rep ; 10(1): 14961, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917916

RESUMO

The North Atlantic Oscillation (NAO) is the major atmospheric mode that controls winter European climate variability because its strength and phase determine regional temperature, precipitation and storm tracks. The NAO spatial structure and associated climatic impacts over Europe are not stationary making it crucial to understanding its past evolution in order to improve the predictability of future scenarios. In this regard, there has been a dramatic increase in the number of studies aimed at reconstructing past NAO variability, but the information related to decadal-scale NAO evolution beyond the last millennium is scarce and inconclusive. We present a new 2,000-year multi-annual, proxy-based reconstruction of local NAO impact, with associated uncertainties, obtained by a Bayesian approach. This new local NAO reconstruction is obtained from a mountain lacustrine sedimentary archive of the Iberian Peninsula. This geographical area is not included in previous NAO reconstructions despite being a widely used region for instrumental-based NAO measurements. We assess the main external forcings (i.e., volcanic eruptions and solar activity) on NAO variability which, on a decadal scale, show that a low number of sunspots correlate to low NAO values. By comparison with other previously published NAO reconstructions in our analyses we can test the stationarity of the solar influence on the NAO signal across a latitudinal gradient based on the position of the employed archives for each NAO reconstruction. Inconclusive results on the volcanic forcing on NAO variability over decadal time-scales indicates the need for further studies. Moreover, we highlight the potential role of other North Atlantic modes of variability (i.e., East Atlantic pattern) on the non-stationary behaviour of the NAO throughout the Common Era, likely via solar forcing.

7.
Sci Total Environ ; 691: 1353-1361, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31466213

RESUMO

Water temperature of deep lakes is often used to evaluate climate variability over long periods. Santa Maria del Oro Lake is a sub-tropical crater-lake (60 m maximum depth) almost confined by surrounding mountains, which only receives seasonal fresh water input. In order to evaluate lake thermal variations, we measured water temperatures at bottom, 4 m, 10 m, 25 m, and 32 m depth. To study lake vertical mixing process, we implemented a 3D high-resolution model forced with atmospheric variables. Field data analysis indicate an hypolimnetic warming rate of 0.1136 ±â€¯0.0001 °C y-1, about ten times larger than the mean global warming rate, and model results indicated that this was mainly caused by thermal diffusion between surface and bottom water layers. The lake presents a stable temperature stratification, which can reach 40 m depth during the windiest and coolest nights, indicating that the lake is oligomictic (i.e. mixes only occasionally). Inter-annual climate variability and global warming can alter the frequency of full vertical water mixing and, therefore, deep water warming. The used methodology can be useful to evaluate bottom trend temperature of subtropical lakes worldwide, and results may contribute to the use of deep lake waters as sentinels of multi-annual climate variability. As deep water mixing affects water quality, this may also be useful to better manage lake environmental services.

8.
Sci Rep ; 8(1): 17279, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467408

RESUMO

The caldera collapse of Deception Island Volcano, Antarctica, was comparable in scale to some of the largest eruptions on Earth over the last several millennia. Despite its magnitude and potential for far-reaching environmental effects, the age of this event has never been established, with estimates ranging from the late Pleistocene to 3370 years before present. Here we analyse nearby lake sediments in which we identify a singular event produced by Deception Island's caldera collapse that occurred 3980 ± 125 calibrated years before present. The erupted tephra record the distinct geochemical composition of ejecta from the caldera-forming eruption, whilst an extreme seismic episode is recorded by lake sediments immediately overlying the collapse tephra. The newly constrained caldera collapse is now the largest volcanic eruption confirmed in Antarctica during the Holocene. An examination of palaeorecords reveals evidence in marine and lacustrine sediments for contemporaneous seismicity around the Antarctic Peninsula; synchronous glaciochemical volcanic signatures also record the eruption in ice cores spread around Antarctica, reaching >4600 km from source. The widespread footprint suggests that this eruption would have had significant climatic and ecological effects across a vast area of the south polar region.

9.
PLoS One ; 11(1): e0146578, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26815202

RESUMO

Tephrochronology uses recognizable volcanic ash layers (from airborne pyroclastic deposits, or tephras) in geological strata to set unique time references for paleoenvironmental events across wide geographic areas. This involves the detection of tephra layers which sometimes are not evident to the naked eye, including the so-called cryptotephras. Tests that are expensive, time-consuming, and/or destructive are often required. Destructive testing for tephra layers of cores from difficult regions, such as Antarctica, which are useful sources of other kinds of information beyond tephras, is always undesirable. Here we propose hyperspectral imaging of cores, Self-Organizing Map (SOM) clustering of the preprocessed spectral signatures, and spatial analysis of the classified images as a convenient, fast, non-destructive method for tephra detection. We test the method in five sediment cores from three Antarctic lakes, and show its potential for detection of tephras and cryptotephras.


Assuntos
Sedimentos Geológicos/análise , Erupções Vulcânicas/análise , Regiões Antárticas , Lagos , Imagem Óptica , Análise Espectral
10.
Sci Total Environ ; 533: 506-19, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26186465

RESUMO

Land degradation and soil erosion are key environmental problems in Mediterranean mountains characterized by a long history of human occupation and a strong variability of hydrological regimes. To assess recent trends and evaluate climatic and anthropogenic impacts in these highly human modified watersheds we apply an historical approach combining lake sediment core multi-proxy analyses and reconstructions of past land uses to El Tobar Lake watershed, located in the Iberian Range (Central Spain). Four main periods of increased sediment delivery have been identified in the 8m long sediment sequence by their depositional and geochemical signatures. They took place around 16th, late 18th, mid 19th and early 20th centuries as a result of large land uses changes such as forest clearing, farming and grazing during periods of increasing population. In this highly human-modified watershed, positive synergies between human impact and humid periods led to increased sediment delivery periods. During the last millennium, the lake depositional and geochemical cycles recovered quickly after each sediment delivery event, showing strong resilience of the lacustrine system to watershed disturbance. Recent changes are characterized by large hydrological affections since 1967 with the construction of a canal from a nearby reservoir and a decreased in anthropic pressure in the watershed as rural areas were abandoned. The increased fresh water influx to the lake has caused large biological changes, leading to stronger meromictic conditions and higher organic matter accumulation while terrigenous inputs have decreased. Degradation processes in Iberian Range watersheds are strongly controlled by anthropic activities (land use changes, soil erosion) but modulated by climate-related hydrological changes (water availability, flood and runoff frequency).


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/análise , Lagos/química , Poluição da Água/estatística & dados numéricos , Mudança Climática , Espanha
11.
Sci Total Environ ; 426: 446-53, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22542231

RESUMO

The causes of interannual nitrate variability in rivers remain uncertain, but extreme climatic events have been suggested as drivers of large nitrate inputs to rivers. Based on a 24-year data set (1983-2006), we suggest that El Niño-Southern Oscillation (ENSO) can affect nitrate behavior in a seasonal extra-tropical stream, the Llobregat (NE Iberian Peninsula), located thousands of kilometers away from the ENSO oscillating system via atmospheric teleconnections. Two commonly used indices, the Southern Oscillation Index (SOI) and the self-calibrating-Palmer Drought Severity Index (scPDSI) showed highly significant correlations with nitrate concentrations, which recurrently increased during La Niña phases, coinciding with severe droughts.


Assuntos
El Niño Oscilação Sul , Nitratos/análise , Rios/química , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Monitoramento Ambiental , Região do Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA