Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Environ Manage ; 276: 111073, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32916546

RESUMO

This work investigates the mechanisms determining Cr speciation and availability in two different soils polluted with two chromium sources (an industrial sludge, highly polluted with Cr, and Cr(VI) solution) and the influence of these parameters on the recovery of the soil functions related with biological quality and plant growth. The experiment was carried out in greenhouse conditions using 36 pots of 17 kg for the growth of Silene vulgaris for 21 months. Logistic Regression Model using Lasso estimator shows that soil organic matter (SOM) and pH control Cr availability in studied soils. In soils treated with the sludge, X ray Absorption spectroscopy showed that Cr was present as Cr(III), biological quality indicators increased and plants were able to grow. However, in soils polluted with Cr(VI), Cr availability was significantly different in the two soils. In the alkaline and poor in organic matter soil, 12% of Cr(VI) remained in the soil leading to the decrease of soil quality indicators and the total inhibition of plant growth. In the neutral soil, Cr(VI) was totally reduced to Cr(III) by soil organic matter (SOM), quality indicators were not affected and plants grown properly. Infrared Spectroscopy showed that different functional groups reacted with Cr in the two soils. This study highlights the importance to understand the mechanisms underlaying Cr redox and adsorption reactions in Cr polluted soils as they determine the potential recovery of the functions related with biological quality indicators and plant growth. The methodology proposed allows this study in complex soil samples at realistic concentrations and may be useful for risk assessment and for the planning of managing strategies in Cr polluted soils.


Assuntos
Silene , Poluentes do Solo , Cromo/análise , Poluição Ambiental , Solo , Poluentes do Solo/análise
2.
Ecotoxicol Environ Saf ; 144: 283-290, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28645029

RESUMO

Understanding the metal behavior at the soil-root interface is of utmost significance for a successful implementation of phytoremediation. In this study, we investigated the differences in chromium (Cr) uptake, chemical changes in soil solution and the shifts in rhizosphere bacterial communities of two genotypes of Silene vulgaris (SV21, SV38) with different tolerance to Cr. A greenhouse experiment was performed in two soils that differed on pH and organic matter (OM) content. An industrial sludge with high content in Cr was used as pollution source. The soil solution in the rhizosphere was sample by Rhizon Soil Moisture Samplers. The total concentration of Cr reached the highest values in soil solution samplers from calcareous soils with poor contents in OM. Plants grown in this soil also increased the Cr uptake in roots of both genotypes, but the concentration was higher in genotype SV-38 than in SV21. The clustering analysis of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA fragments revealed major differences in bacterial community structure related to Cr pollution, followed by soil type and finally, plant genotype. Diversity indices based on DGGE profiles were the highest in alkaline soil, and between genotypes, values were significantly greater in SV38. Canonical correspondence analysis (CCA) showed that changes in bacterial community structure of rhizosphere were highly correlated with total Cr concentration and soil solution pH. The isolation and identification of S. vulgaris bacterial rhizosphere revealed a different composition according to soil type and plant genotype. Results suggested the potential role of Pseudomonas fluorescens on Cr mobilization and therefore, on enhanced metal bioavailability and may provide a starting point for further studies aimed at the combined use of tolerant plants and selected metal mobilizing rhizobacteria, in the microbial-assisted phytoremediation of Cr-polluted soils.


Assuntos
Cromo/metabolismo , Rizosfera , Silene/genética , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo/química , Biodegradação Ambiental , Eletroforese em Gel de Gradiente Desnaturante , Genótipo , Raízes de Plantas/metabolismo , Pseudomonas fluorescens/isolamento & purificação , RNA Ribossômico 16S/genética , Silene/metabolismo
3.
Phys Chem Chem Phys ; 12(12): 2830-7, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20449373

RESUMO

A comparative study of three different strategies to pattern lactate oxidase (LOx) onto bare gold substrates by microcontact printing (muCP) is presented. The quality of the resulting patterns in terms of homogeneity, compactness and stability has been evaluated by atomic force microscopy in both air and aqueous conditions. The following approaches have been tested: (i) LOx was directly stamped to a bare gold surface; (ii) LOx was previously covalently bonded to a thiolated molecule, dithiodipropionic acid di(N-succinimidyl ester) (DTSP), and this conjugate (LOx/DTSP) was transferred from an elastomeric stamp to a bare gold substrate; (iii) formation of a LOx/DTSP micropattern on a bare gold surface (as described in approach ii) was followed by exposure to a solution containing hexadecylmercaptane (HDM). In all cases, the catalytic activity of the final LOx patterns has been assessed by electrochemical measurements. From comparison of the three strategies, it can be concluded that the third one gives rise to LOx patterns that present a high stability and compactness, also offering the advantage of reducing the number of microcontact printing steps to one.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas , Ouro/química , Oxigenases de Função Mista/química , Propriedades de Superfície
4.
Anal Chim Acta ; 904: 76-82, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26724765

RESUMO

An electrochemical sensor for mercury (II) determination was developed by modifying the surface of a commercial screen-printed carbon electrode (SPCE) with a polystyrene sulfonate-NiO-carbon nanopowder composite material. Mercury measurements were performed by differential pulse anodic stripping voltammetry (DPASV). Sensor composition and measurement conditions were optimized using a multivariate experiment design. A screening experiment by using a Plackett-Burman design was first performed in order to determine the main contributing factors to the electrochemical response. The most important factors were employed to establish the interactions between different experimental variables and get the best conditions for mercury determination. For this purpose, a five level central composite design and a response surface methodology were used. The optimized method using the developed NiO-PSS-SPCE sensor presents a very low limit of detection of 0.021 µg L(-1) and a linear response over two concentration ranges with two different slopes, from 0.05 to 2.0 µg L(-1) and between 2.0 and 75 µg L(-1). The sensor was successfully applied to mercury determination in water samples.

5.
Sci Total Environ ; 463-464: 1049-59, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23891997

RESUMO

Analyses of substratum samples under a landfill were performed to assess the pollution impact of waste over a clay-sand material after nine years of exposure. These samples presented different illite/kaolinite ratios and an acid pH, especially low near the waste/soil contact in a 1-1.5 m soil thickness with low density and despite the basic pH of the collected actual methanogenic leachate. This study has raised the effects of a presumably acid stage in the waste leachate on the substratum final quality of clay and its physical-chemical properties as an attenuation buffer. These effects were the dissolution of carbonate minerals, decrease of dry density, increase of hydraulic conductivity, release of metals and formation of clays with low cationic exchange capacity (CEC) as kaolinite. The large presence of H(+) and Al(OH)(3-x)(x+) depleted the neutralizing capacity of the substratum and occupied exchangeable sites, decreasing therefore the available sites for retaining leachate pollutants, which traveled further than the first-meter depth of the substratum. In order to combat and prevent pollution as well as to preserve the good barrier properties under new landfills it is proposed to select illitic materials better than kaolinitic substratum, to avoid acid landfilling and if not possible to add lime.

6.
Waste Manag ; 32(3): 482-97, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22169764

RESUMO

The long-term effectiveness of the geological barrier beneath municipal-waste landfills is a critical issue for soil and groundwater protection. This study examines natural clayey soils directly in contact with the waste deposited in three landfills over 12 years old in Spain. Several physicochemical and geological parameters were measured as a function of depth. Electrical conductivity (EC), water-soluble organic carbon (WSOC), Cl(-), NH(4)(+), Na(+) and exchangeable NH(4)(+) and Na(+) were used as parameters to measure the penetration of landfill leachate pollution. Mineralogy, specific surface area and cationic-exchange capacities were analyzed to characterize the materials under the landfills. A principal component analysis, combined with a Varimax rotation, was applied to the data to determine patterns of association between samples and variables not evident upon initial inspection. The main factors explaining the variation in the data are related to waste composition and local geology. Although leachates have been in contact with clays for long time periods (13-24 years), WSOC and EC fronts are attenuated at depths of 0.2-1.5m within the clay layer. Taking into account this depth of the clayey materials, these natural substrata (>45% illite-smectite-type sheet silicates) are suitable for confining leachate pollution and for complying with European legislation. This paper outlines the relevant differences in the clayey materials of the three landfills in which a diffusive flux attenuation capacity (A(c)) is defined as a function (1) of the rate of decrease of the parameters per meter of material, (2) of the age and area of the landfill and (3) of the quantity and quality of the wastes.


Assuntos
Silicatos de Alumínio , Gerenciamento de Resíduos , Poluentes Químicos da Água/análise , Poluição da Água/análise , Silicatos de Alumínio/análise , Argila , Análise de Componente Principal , Poluição da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA