Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(40): e2306761120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756335

RESUMO

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.


Assuntos
Antineoplásicos , Fator de Transcrição STAT5 , Humanos , Imunidade Inata , Diferenciação Celular , Células Matadoras Naturais , Inflamação , Fator de Transcrição STAT4/genética
2.
Eur J Immunol ; 53(2): e2250198, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36440686

RESUMO

Natural killer (NK) cell activation is regulated by activating and inhibitory receptors that facilitate diseased cell recognition. Among activating receptors, NKG2D and DNAM-1 play a pivotal role in anticancer immune responses since they bind ligands upregulated on transformed cells. During tumor progression, however, these receptors are frequently downmodulated and rendered functionally inactive. Of note, NKG2D internalization has been associated with the acquisition of a dysfunctional phenotype characterized by the cross-tolerization of unrelated activating receptors. However, our knowledge of the consequences of NKG2D engagement is still incomplete. Here, by cytotoxicity assays combined with confocal microscopy, we demonstrate that NKG2D engagement on human NK cells impairs DNAM-1-mediated killing through two different converging mechanisms: by the upregulation of the checkpoint inhibitory receptor TIGIT, that in turn suppresses DNAM-1-mediated cytotoxic function, and by direct inhibition of DNAM-1-promoted signaling. Our results highlight a novel interplay between NKG2D and DNAM-1/TIGIT receptors that may facilitate neoplastic cell evasion from NK cell-mediated clearance.


Assuntos
Células Matadoras Naturais , Neoplasias , Evasão Tumoral , Humanos , Células Matadoras Naturais/imunologia , Neoplasias/genética , Neoplasias/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Transdução de Sinais , Evasão Tumoral/genética , Evasão Tumoral/imunologia
3.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768145

RESUMO

Nuclear factor-κB (NF-κB) transcription factors play a key role in the pathogenesis of multiple myeloma (MM). The survival, proliferation and chemoresistance of malignant plasma cells largely rely on the activation of canonical and noncanonical NF-κB pathways. They are triggered by cancer-associated mutations or by the autocrine and paracrine production of cytokines and growth factors as well as direct interaction with cellular and noncellular components of bone marrow microenvironment (BM). In this context, NF-κB also significantly affects the activity of noncancerous cells, including mesenchymal stromal cells (MSCs), which have a critical role in disease progression. Indeed, NF-κB transcription factors are involved in inflammatory signaling that alters the functional properties of these cells to support cancer evolution. Moreover, they act as regulators and/or effectors of pathways involved in the interplay between MSCs and MM cells. The aim of this review is to analyze the role of NF-κB in this hematologic cancer, focusing on NF-κB-dependent mechanisms in tumor cells, MSCs and myeloma-mesenchymal stromal cell crosstalk.


Assuntos
Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , NF-kappa B/metabolismo , Mieloma Múltiplo/patologia , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral
4.
Eur J Immunol ; 51(11): 2607-2617, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34392531

RESUMO

Rearrangement of the actin cytoskeleton is critical for cytotoxic and immunoregulatory functions as well as migration of natural killer (NK) cells. However, dynamic reorganization of actin is a complex process, which remains largely unknown. Here, we investigated the role of the protein Cereblon (CRBN), an E3 ubiquitin ligase complex co-receptor and the primary target of the immunomodulatory drugs, in NK cells. We observed that CRBN partially colocalizes with F-actin in chemokine-treated NK cells and is recruited to the immunological synapse, thus suggesting a role for this protein in cytoskeleton reorganization. Accordingly, silencing of CRBN in NK cells results in a reduced cytotoxicity that correlates with a defect in conjugate and lytic synapse formation. Moreover, CRBN depletion significantly impairs the ability of NK cells to migrate and reduces the enhancing effect of lenalidomide on NK cell migration. Finally, we provided evidence that CRBN is required for activation of the small GTPase Rac1, a critical mediator of cytoskeleton dynamics. Indeed, in CRBN-depleted NK cells, chemokine-mediated or target cell-mediated Rac1 activation is significantly reduced. Altogether our data identify a critical role for CRBN in regulating NK cell functions and suggest that this protein may mediate the stimulatory effect of lenalidomide on NK cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Movimento Celular/imunologia , Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/imunologia , Ubiquitina-Proteína Ligases/imunologia , Proteínas rac1 de Ligação ao GTP/imunologia , Movimento Celular/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Humanos , Agentes de Imunomodulação/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Lenalidomida/farmacologia
5.
Eur J Immunol ; 51(11): 2568-2575, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34347289

RESUMO

Type 1 innate lymphoid cells (ILC1) are tissue-resident lymphocytes that provide early protection against bacterial and viral infections. Discrete transcriptional states of ILC1 have been identified in homeostatic and pathological contexts. However, whether these states delineate ILC1 with different functional properties is not completely understood. Here, we show that liver ILC1 are heterogeneous for the expression of distinct effector molecules and surface receptors, including granzyme A (GzmA) and CD160, in mice. ILC1 expressing high levels of GzmA are enriched in the liver of adult mice, and represent the main hepatic ILC1 population at birth. However, the heterogeneity of GzmA and CD160 expression in hepatic ILC1 begins perinatally and increases with age. GzmA+ ILC1 differ from NK cells for the limited homeostatic requirements of JAK/STAT signals and the transcription factor Nfil3. Moreover, by employing Rorc(γt)-fate map (fm) reporter mice, we established that ILC3-ILC1 plasticity contributes to delineate the heterogeneity of liver ILC1, with RORγt-fm+ cells skewed toward a GzmA- CD160+ phenotype. Finally, we showed that ILC1 defined by the expression of GzmA and CD160 are characterized by graded cytotoxic potential and ability to produce IFN-γ. In conclusion, our findings help deconvoluting ILC1 heterogeneity and provide evidence for functional diversification of liver ILC1.


Assuntos
Fígado/citologia , Fígado/imunologia , Subpopulações de Linfócitos/citologia , Linfócitos/citologia , Animais , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/metabolismo , Granzimas/metabolismo , Imunidade Inata/imunologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Receptores Imunológicos/metabolismo
6.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887206

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies and leading causes of cancer-related deaths worldwide. Despite its complex pathogenesis and progression, CRC represents a well-fitting example of how the immune contexture can dictate the disease outcome. The presence of cytotoxic lymphocytes, both CD8+ T cells and natural killer (NK) cells, represents a relevant prognostic factor in CRC and is associated with a better overall survival. Together with NK cells, other innate lymphocytes, namely, innate lymphoid cells (ILCs), have been found both in biopsies of CRC patients and in murine models of intestinal cancer, playing both pro- and anti-tumor activities. In particular, several type 1 innate lymphoid cells (ILC1) with cytotoxic functions have been recently described, and evidence in mice shows a role for both NK cells and ILC1 in controlling CRC metastasis. In this review, we provide an overview of the features of NK cells and the expanding spectrum of innate lymphocytes with cytotoxic functions. We also comment on both the described and the potential roles these innate lymphocytes can play during the progression of intestinal cancer leading to metastasis. Finally, we discuss recent advances in the molecular mechanisms underlying the functional regulation of cytotoxic innate lymphocytes in CRC.


Assuntos
Neoplasias Colorretais , Linfócitos , Animais , Linfócitos T CD8-Positivos , Imunidade Inata , Células Matadoras Naturais , Camundongos
7.
Immunol Rev ; 286(1): 148-159, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30294965

RESUMO

Immunity to pathogens is ensured through integration of early responses mediated by innate cells and late effector functions taking place after terminal differentiation of adaptive lymphocytes. In this context, innate lymphoid cells (ILCs) and adaptive T cells represent a clear example of how prototypical effector functions, including polarized expression of cytokines and/or cytotoxic activity, can occur with overlapping modalities but different timing. The ability of ILCs to provide early protection relies on their poised epigenetic state, which determines their propensity to quickly respond to cytokines and to activate specific patterns of signal-dependent transcription factors. Cytokines activating the Janus kinases (JAKs) and members of the signal transducer and activator of transcription (STAT) pathway are key regulators of lymphoid development and sustain the processes underlying T-cell activation and differentiation. The role of the JAK/STAT pathway has been recently extended to several aspects of ILC biology. Here, we discuss how JAK/STAT signals affect ILC development and effector functions in the context of immune responses, highlighting the molecular mechanisms involved in regulation of gene expression as well as the potential of targeting the JAK/STAT pathway in inflammatory pathologies.


Assuntos
Janus Quinases/metabolismo , Linfócitos/imunologia , Fatores de Transcrição STAT/metabolismo , Animais , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação , Transdução de Sinais
8.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499314

RESUMO

The Ikaros zing-finger family transcription factors (IKZF TFs) are important regulators of lymphocyte development and differentiation and are also highly expressed in B cell malignancies, including Multiple Myeloma (MM), where they are required for cancer cell growth and survival. Moreover, IKZF TFs negatively control the functional properties of many immune cells. Thus, the targeting of these proteins has relevant therapeutic implications in cancer. Indeed, accumulating evidence demonstrated that downregulation of Ikaros and Aiolos, two members of the IKZF family, in malignant plasma cells as well as in adaptative and innate lymphocytes, is key for the anti-myeloma activity of Immunomodulatory drugs (IMiDs). This review is focused on IKZF TF-related pathways in MM. In particular, we will address how the depletion of IKZF TFs exerts cytotoxic effects on MM cells, by reducing their survival and proliferation, and concomitantly potentiates the antitumor immune response, thus contributing to therapeutic efficacy of IMiDs, a cornerstone in the treatment of this neoplasia.


Assuntos
Fator de Transcrição Ikaros/fisiologia , Mieloma Múltiplo/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Fator de Transcrição Ikaros/genética , Imunidade/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Lenalidomida/farmacologia , Linfócitos/citologia , Camundongos , Mieloma Múltiplo/imunologia , Talidomida/farmacologia
9.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019260

RESUMO

CD155 is an adhesion molecule belonging to the Nectin/Nectin-like family often overexpressed on tumor cells and involved in many different processes such as cell adhesion, migration and proliferation. In contrast to these pro-tumorigenic functions, CD155 is also a ligand for the activating receptor DNAM-1 expressed on cytotoxic lymphocytes including Natural Killer (NK) cells and involved in anti-tumor immune response. However, during tumor progression inhibitory receptors for CD155 are up-regulated on the surface of effector cells, contributing to an impairment of their cytotoxic capacity. In this review we will focus on the roles of CD155 as a ligand for the activating receptor DNAM-1 regulating immune surveillance against cancer and as pro-oncogenic molecule favoring tumor proliferation, invasion and immune evasion. A deeper understanding of the multiple roles played by CD155 in cancer development contributes to improving anti-tumor strategies aimed to potentiate immune response against cancer.


Assuntos
Vigilância Imunológica/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Receptores Virais/metabolismo , Progressão da Doença , Humanos , Neoplasias/metabolismo
10.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486257

RESUMO

Dendritic cells (DCs) constitute a complex network of cell subsets with common functions but also with many divergent aspects. All dendritic cell subsets share the ability to prime T cell response and to undergo a complex trafficking program related to their stage of maturation and function. For these reasons, dendritic cells are implicated in a large variety of both protective and detrimental immune responses, including a crucial role in promoting anti-tumor responses. Although cDC1s are the most potent subset in tumor antigen cross-presentation, they are not sufficient to induce full-strength anti-tumor cytotoxic T cell response and need close interaction and cooperativity with the other dendritic cell subsets, namely cDC2s and pDCs. This review will take into consideration different aspects of DC biology, including the functional role of dendritic cell subsets in both fostering and suppressing tumor growth, the mechanisms underlying their recruitment into the tumor microenvironment, as well as the prognostic value and the potentiality of dendritic cell therapeutic targeting. Understanding the specificity of dendritic cell subsets will allow to gain insights on role of these cells in pathological conditions and to design new selective promising therapeutic approaches.


Assuntos
Células Dendríticas/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Neoplasias/imunologia , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Movimento Celular , Quimiocinas/imunologia , Citocinas/imunologia , Progressão da Doença , Homeostase , Humanos , Imunofenotipagem , Imunossupressores/farmacologia , Imunoterapia , Camundongos , Neoplasias/imunologia , Prognóstico , Resultado do Tratamento , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA