Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 295: 113099, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175506

RESUMO

In the Adriatic Sea, massive rainfall events are causing flooding of rivers and streams, with severe consequences on the environment. The consequent bacterial contamination of bathing water poses public health risks besides damaging tourism and the economy. This study was conducted in the framework of WATERCARE, an EU Interreg Italy-Croatia Project, which aims at reducing the impact of microbial contamination on Adriatic bathing water due to heavy rainfall events drained in the local sewage network and; enhancing the quality of local waters; and providing support for the decision-making processes regarding the management of bathing water in line with EU regulations. The study involved the development of an innovative water quality integrated system that helps meet these objectives. It consists of four components: a real time hydro-meteorological monitoring system; an autosampler to collect freshwater samples during and after significant rainfall events; a forecast system to simulate the dispersion of pollutants in seawater; and a real-time alert system that can predict the potential ecological risk from the microbial contamination of seawater. The system was developed and tested at a pilot site (Fano, Italy). These preliminary results will be used to develop guidelines for urban wastewater and coastal system quality assessments to contribute to develop policy actions and final governance decisions.


Assuntos
Microbiologia da Água , Qualidade da Água , Praias , Croácia , Monitoramento Ambiental , Itália , Água do Mar , Abastecimento de Água
2.
Sensors (Basel) ; 20(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182919

RESUMO

Hydrocarbon seepage is overlooked in the marine environment, mostly due to the lack of high-resolution exploration data. This contribution is about the set-up of a relocatable and cost-effective monitoring system, which was tested on two seepages in the Central Adriatic Sea. The two case studies are an oil spill at a water depth of 10 m and scattered biogenic methane seeps at a water depth of 84 m. Gas plumes in the water column were detected with a multibeam system, tightened to sub-seafloor seismic reflection data. Dissolved benthic fluxes of nutrients, metals and Dissolved Inorganic Carbon (DIC) were measured by in situ deployment of a benthic chamber, which was used also for the first time to collect water samples for hydrocarbons characterization. In addition, the concentration of polycyclic aromatic hydrocarbons, as well as major and trace elements were analyzed to provide an estimate of hydrocarbon contamination in the surrounding sediment and to make further inferences on the petroleum system.

3.
Sensors (Basel) ; 19(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185640

RESUMO

Marine environments are currently subject to strong ecological pressure due to local and global anthropic stressors, such as pollutants and atmospheric inputs, which also cause ocean acidification and warming. These strains can result in biogeochemical cycle variations, environmental pollution, and changes in benthic-pelagic coupling processes. Two new devices, the Amerigo Lander and the Automatic Benthic Chamber (CBA), have been developed to measure the fluxes of dissolved chemical species between sediment and the water column, to assess the biogeochemical cycle and benthic-pelagic coupling alterations due to human activities. The Amerigo Lander can operate in shallow as well as deep water (up to 6000 m), whereas the CBA has been developed for the continental shelf (up to 200 m). The lander can also be used to deploy a range of instruments on the seafloor, to study the benthic ecosystems. The two devices have successfully been tested in a variety of research tasks and environmental impact assessments in shallow and deep waters. Their measured flux data show good agreement and are also consistent with previous data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA