Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(4): 045001, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768289

RESUMO

The fundamental physics of the magnetic field distribution in a plasma implosion with a preembedded magnetic field is investigated within a gas-puff Z pinch. Time and space resolved spectroscopy of the polarized Zeeman effect, applied for the first time, reveals the impact of a preembedded axial field on the evolution of the current distribution driven by a pulsed-power generator. The measurements show that the azimuthal magnetic field in the imploding plasma, even in the presence of a weak axial magnetic field, is substantially smaller than expected from the ratio of the driving current to the plasma radius. Much of the current flows at large radii through a slowly imploding, low-density plasma. Previously unpredicted observations in higher-power imploding-magnetized-plasma experiments, including recent, unexplained structures observed in the magnetized liner inertial fusion experiment, may be explained by the present discovery. The development of a force-free current configuration is suggested to explain this phenomenon.

2.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023348

RESUMO

The use of an electron beam to pump an excimer laser has the advantage of being readily scalable to higher laser energies at high efficiency. Typically, a pulsed power driver generates the electron beam in a vacuum diode that consists of an electron emitter and a thin anode foil that holds the vacuum against the atmospheric-pressure laser gas. Even a miniscule leak in the anode foil can lead to an electrical breakdown in the vacuum diode, resulting in the destruction of the foil and evidence of the failure mechanism. The problem is even more onerous at the high voltage, high current, and pulse repetition frequencies needed for the large-area diodes used in excimer lasers for fusion research. Electra is one such laser used at the Naval Research Laboratory to develop excimer laser technologies for inertial fusion energy. To achieve longevity on Electra, it was necessary to instantly detect an incipient foil failure and halt the pulsed power drivers so the physical cause(s) could be studied. This rapid detection was accomplished using an optically filtered photodiode that senses the presence of argon emission from a Penning discharge vessel attached to the vacuum diodes. Details of this "Spectral Penning Leak Detector" device and its operation are presented. The diagnostics allowed the identification of a recurrent pinhole leak in the anode foil induced by cathode spots, which were created by electron emission from the foil during post-pulse voltage reversals. Eliminating the voltage reversals increased the continuous operation of the Electra laser from hundreds of shots to over 90 000 shots.

3.
Phys Rev Lett ; 107(10): 105001, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21981506

RESUMO

The time history of the local ion kinetic energy in a stagnating plasma was determined from Doppler-dominated line shapes. Using independent determination of the plasma properties for the same plasma region, the data allowed for inferring the time-dependent ion temperature, and for discriminating the temperature from the total ion kinetic energy. It is found that throughout most of the stagnation period the ion thermal energy constitutes a small fraction of the total ion kinetic energy; the latter is dominated by hydrodynamic motion. Both the ion hydrodynamic and thermal energies are observed to decrease to the electron thermal energy by the end of the stagnation period. It is confirmed that the total ion kinetic energy available at the stagnating plasma and the total radiation emitted are in balance, as obtained in our previous experiment. The dissipation time of the hydrodynamic energy thus appears to determine the duration (and power) of the K emission.

4.
Phys Rev E ; 98(1-1): 013105, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30110797

RESUMO

The classic self-similar solutions of the nonstationary compressible Euler equations obtained for a blast-wave propagation (Sedov, Taylor, and von Neumann), a shock-wave implosion (Guderley, Landau, and Stanyukovich), or an impulsive loading of a planar target (von Hoerner, Häfele, and Zel'dovich) have all been derived for a polytropic ideal gas. None of them can be generalized for a fluid with an arbitrary equation of state (EOS), such as the van der Waals EOS of a non-ideal-gas or a three-term EOS of a condensed material. We demonstrate here that the Noh accretion-shock problem is an exception. Its self-similar solutions exist in cylindrical and spherical geometry for fluids and materials with an arbitrary EOS. Such solutions for finite accretion-shock strength and nonuniform inflow velocity are constructed semianalytically with a model three-term equation of state that includes cold, thermal ion (lattice), and thermal electron contributions to the pressure and internal energy. Examples are presented for aluminum and copper. Other material- and EOS-specific semianalytic solutions of the Noh problem can be easily constructed using the same method for any material that in the pressure range of interest can be approximated as a dissipation-free fluid with an arbitrary equation of state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA