Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2122309119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858445

RESUMO

Plants and microbes share common metabolic pathways for producing a range of bioproducts that are potentially foundational to the future bioeconomy. However, in planta accumulation and microbial production of bioproducts have never been systematically compared on an economic basis to identify optimal routes of production. A detailed technoeconomic analysis of four exemplar compounds (4-hydroxybenzoic acid [4-HBA], catechol, muconic acid, and 2-pyrone-4,6-dicarboxylic acid [PDC]) is conducted with the highest reported yields and accumulation rates to identify economically advantaged platforms and breakeven targets for plants and microbes. The results indicate that in planta mass accumulation ranging from 0.1 to 0.3 dry weight % (dwt%) can achieve costs comparable to microbial routes operating at 40 to 55% of maximum theoretical yields. These yields and accumulation rates are sufficient to be cost competitive if the products are sold at market prices consistent with specialty chemicals ($20 to $50/kg). Prices consistent with commodity chemicals will require an order-of-magnitude-greater accumulation rate for plants and/or yields nearing theoretical maxima for microbial production platforms. This comparative analysis revealed that the demonstrated accumulation rates of 4-HBA (3.2 dwt%) and PDC (3.0 dwt%) in engineered plants vastly outperform microbial routes, even if microbial platforms were to reach theoretical maximum yields. Their recovery and sale as part of a lignocellulosic biorefinery could enable biofuel prices to be competitive with petroleum. Muconic acid and catechol, in contrast, are currently more attractive when produced microbially using a sugar feedstock. Ultimately, both platforms can play an important role in replacing fossil-derived products.


Assuntos
Bactérias , Produtos Biológicos , Biotecnologia , Redes e Vias Metabólicas , Plantas , Leveduras , Bactérias/genética , Bactérias/metabolismo , Produtos Biológicos/metabolismo , Biotecnologia/economia , Biotecnologia/tendências , Catecóis/metabolismo , Parabenos/metabolismo , Plantas/genética , Plantas/metabolismo , Pironas/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo , Leveduras/genética , Leveduras/metabolismo
2.
Metab Eng ; 78: 72-83, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201565

RESUMO

Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.


Assuntos
Lignina , Engenharia Metabólica , Engenharia Metabólica/métodos , Lignina/metabolismo
3.
Chemistry ; 29(27): e202300330, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36746778

RESUMO

The efficient utilization of lignin, the direct source of renewable aromatics, into value-added renewable chemicals is an important step towards sustainable biorefinery practices. Nevertheless, owing to the random heterogeneous structure and limited solubility, lignin utilization has been primarily limited to burning for energy. The catalytic depolymerization of lignin has been proposed and demonstrated as a viable route to sustainable biorefinery, however, low yields and poor selectivity of products, high char formation, and limited to no recycling of transition-metal-based catalyst involved in lignin depolymerization demands attention to enable practical-scale lignocellulosic biorefineries. In this study, we demonstrate the catalytic depolymerization of ionic liquid-based biorefinery poplar lignin into guaiacols over a reusable zirconium phosphate supported palladium catalyst. The essence of the study lies in the high conversion (>80 %), minimum char formation (7-16 %), high yields of guaiacols (up to 200 mg / g of lignin), and catalyst reusability. Both solid residue, liquid stream, and gaseous products were thoroughly characterized using ICP-OES, PXRD, CHN analysis, GC-MS, GPC, and 2D NMR to understand the hydrogenolysis pathway.

4.
Microb Cell Fact ; 22(1): 145, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537595

RESUMO

R. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R. toruloides grows on several pentose sugars and alcohols, further engineering of the native pathway is required for efficient conversion of biomass-derived sugars to higher value bioproducts. A previous high-throughput study inferred that R. toruloides possesses a non-canonical L-arabinose and D-xylose metabolism proceeding through D-arabitol and D-ribulose. In this study, we present a combination of genetic and metabolite data that refine and extend that model. Chiral separations definitively illustrate that D-arabitol is the enantiomer that accumulates under pentose metabolism. Deletion of putative D-arabitol-2-dehydrogenase (RTO4_9990) results in > 75% conversion of D-xylose to D-arabitol, and is growth-complemented on pentoses by heterologous xylulose kinase expression. Deletion of putative D-ribulose kinase (RTO4_14368) arrests all growth on any pentose tested. Analysis of several pentose dehydrogenase mutants elucidates a complex pathway with multiple enzymes mediating multiple different reactions in differing combinations, from which we also inferred a putative L-ribulose utilization pathway. Our results suggest that we have identified enzymes responsible for the majority of pathway flux, with additional unknown enzymes providing accessory activity at multiple steps. Further biochemical characterization of the enzymes described here will enable a more complete and quantitative understanding of R. toruloides pentose metabolism. These findings add to a growing understanding of the diversity and complexity of microbial pentose metabolism.


Assuntos
Arabinose , Xilose , Xilose/metabolismo , Arabinose/metabolismo , Pentoses/metabolismo
5.
Microb Cell Fact ; 22(1): 144, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537586

RESUMO

Efficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R. toruloides, we leveraged previously reported high-throughput fitness data to identify potential regulators of pentose catabolism. Two genes were selected for further investigation, a putative transcription factor (RTO4_12978, Pnt1) and a homolog of a glucose transceptor involved in carbon catabolite repression (RTO4_11990). Overexpression of Pnt1 increased the specific growth rate approximately twofold early in cultures on xylose and increased the maximum specific growth by 18% while decreasing accumulation of arabitol and xylitol in fast-growing cultures. Improved growth dynamics on xylose translated to a 120% increase in the overall rate of xylose conversion to fatty alcohols in batch culture. Proteomic analysis confirmed that Pnt1 is a major regulator of pentose catabolism in R. toruloides. Deletion of RTO4_11990 increased the growth rate on xylose, but did not relieve carbon catabolite repression in the presence of glucose. Carbon catabolite repression signaling networks remain poorly characterized in R. toruloides and likely comprise a different set of proteins than those mainly characterized in ascomycete fungi.


Assuntos
Proteômica , Xilose , Xilose/metabolismo , Pentoses , Glucose/metabolismo
6.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771097

RESUMO

The range of applications for industrial hemp has consistently increased in various sectors over the years. For example, hemp hurd can be used as a resource to produce biodegradable packaging materials when incorporated into a fungal mycelium composite, a process that has been commercialized. Although these packaging materials can be composted after usage, they may present an opportunity for valorization in a biorefinery setting. Here, we demonstrate the potential of using this type of discarded packaging composite as a feedstock for biofuel production. A one-pot ionic liquid-based biomass deconstruction and conversion process was implemented, and the results from the packaging material were compared with those obtained from untreated hemp hurd. At a 120 °C reaction temperature, 7.5% ionic liquid loading, and 2 h reaction time, the packaging materials showed a higher lignocellulosic sugar yield and sugar concentrations than hemp hurd. Hydrolysates prepared from packaging materials also promoted production of higher titers (1400 mg/L) of the jet-fuel precursor bisabolene when used to cultivate an engineered strain of the yeast Rhodosporidium toruloides. Box-Behnken experiments revealed that pretreatment parameters affected the hemp hurd and packaging materials differently, evidencing different degrees of recalcitrance. This study demonstrated that a hemp hurd-based packaging material can be valorized a second time once it reaches the end of its primary use by supplying it as a feedstock to produce biofuels.


Assuntos
Cannabis , Líquidos Iônicos , Lignina , Açúcares , Tecnologia , Biocombustíveis , Biomassa
7.
Microb Cell Fact ; 21(1): 254, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482295

RESUMO

BACKGROUND: Rhodosporidium toruloides is capable of co-utilization of complex carbon sources and robust growth from lignocellulosic hydrolysates. This oleaginous yeast is therefore an attractive host for heterologous production of valuable bioproducts at high titers from low-cost, deconstructed biomass in an economically and environmentally sustainable manner. Here we demonstrate this by engineering R. toruloides to produce the polyketide triacetic acid lactone (TAL) directly from unfiltered hydrolysate deconstructed from biomass with minimal unit process operations. RESULTS: Introduction of the 2-pyrone synthase gene into R. toruloides enabled the organism to produce 2.4 g/L TAL from simple media or 2.0 g/L from hydrolysate produced from sorghum biomass. Both of these titers are on par with titers from other better-studied microbial hosts after they had been heavily engineered. We next demonstrate that filtered hydrolysates produced from ensiled sorghum are superior to those derived from dried sorghum for TAL production, likely due to the substantial organic acids produced during ensiling. We also demonstrate that the organic acids found in ensiled biomass can be used for direct synthesis of ionic liquids within the biomass pretreatment process, enabling consolidation of unit operations of in-situ ionic liquid synthesis, pretreatment, saccharification, and fermentation into a one-pot, separations-free process. Finally, we demonstrate this consolidation in a 2 L bioreactor using unfiltered hydrolysate, producing 3.9 g/L TAL. CONCLUSION: Many steps involved in deconstructing biomass into fermentable substrate can be combined into a distinct operation, and directly fed to cultures of engineered R. toruloides cultures for subsequent valorization into gram per liter titers of TAL in a cost-effective manner.

8.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234813

RESUMO

Growing interest in sustainable sources of chemicals and energy from renewable and reliable sources has stimulated the design and synthesis of renewable Schiff-base (iminium) ionic liquids (ILs) to replace fossil-derived ILs. In this study, we report on the synthesis of three unique iminium-acetate ILs from lignin-derived aldehyde for a sustainable "future" lignocellulosic biorefinery. The synthesized ILs contained only imines or imines along with amines in their structure; the ILs with only imines group exhibited better pretreatment efficacy, achieving >89% sugar release. Various analytical and computational tools were employed to understand the pretreatment efficacy of these ILs. This is the first study to demonstrate the ease of synthesis of these renewable ILs, and therefore, opens the door for a new class of "Schiff-base ILs" for further investigation that could also be designed to be task specific.


Assuntos
Líquidos Iônicos , Lignina , Aldeídos , Aminas , Biomassa , Hidrólise , Iminas , Líquidos Iônicos/química , Lignina/química , Açúcares
9.
Microb Cell Fact ; 20(1): 181, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526022

RESUMO

Hydroxycinnamic acids such as p-coumaric acid (CA) are chemically linked to lignin in grassy biomass with fairly labile ester bonds and therefore represent a straightforward opportunity to extract and valorize lignin components. In this work, we investigated the enzymatic conversion of CA extracted from lignocellulose to 4-vinylphenol (4VP) by expressing a microbial phenolic acid decarboxylase in Corynebacterium glutamicum, Escherichia coli, and Bacillus subtilis. The performance of the recombinant strains was evaluated in response to the substrate concentration in rich medium or a lignin liquor and the addition of an organic overlay to perform a continuous product extraction in batch cultures. We found that using undecanol as an overlay enhanced the 4VP titers under high substrate concentrations, while extracting > 97% of the product from the aqueous phase. C. glutamicum showed the highest tolerance to CA and resulted in the accumulation of up to 187 g/L of 4VP from pure CA in the overlay with a 90% yield when using rich media, or 17 g/L of 4VP with a 73% yield from CA extracted from lignin. These results indicate that C. glutamicum is a suitable host for the high-level production of 4VP and that further bioprocess engineering strategies should be explored to optimize the production, extraction, and purification of 4VP from lignin with this organism.


Assuntos
Bactérias/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Engenharia Metabólica/normas , Fenóis/análise , Fenóis/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Técnicas de Cultura Celular por Lotes , Carboxiliases/genética , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Meios de Cultura/química , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica/métodos
10.
Genes Dev ; 27(10): 1159-78, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23666922

RESUMO

Sex is determined in Caenorhabditis elegans by the ratio of X chromosomes to the sets of autosomes, the X:A signal. A set of genes called X signal elements (XSEs) communicates X-chromosome dose by repressing the masculinizing sex determination switch gene xol-1 (XO lethal) in a dose-dependent manner. xol-1 is active in 1X:2A embryos (males) but repressed in 2X:2A embryos (hermaphrodites). Here we showed that the autosome dose is communicated by a set of autosomal signal elements (ASEs) that act in a cumulative, dose-dependent manner to counter XSEs by stimulating xol-1 transcription. We identified new ASEs and explored the biochemical basis by which ASEs antagonize XSEs to determine sex. Multiple antagonistic molecular interactions carried out on a single promoter explain how different X:A values elicit different sexual fates. XSEs (nuclear receptors and homeodomain proteins) and ASEs (T-box and zinc finger proteins) bind directly to several sites on xol-1 to counteract each other's activities and thereby regulate xol-1 transcription. Disrupting ASE- and XSE-binding sites in vivo recapitulated the misregulation of xol-1 transcription caused by disrupting cognate signal element genes. XSE- and ASE-binding sites are distinct and nonoverlapping, suggesting that direct competition for xol-1 binding is not how XSEs counter ASEs. Instead, XSEs likely antagonize ASEs by recruiting cofactors with reciprocal activities that induce opposite transcriptional states. Most ASE- and XSE-binding sites overlap xol-1's -1 nucleosome, which carries activating chromatin marks only when xol-1 is turned on. Coactivators and corepressors tethered by proteins similar to ASEs and XSEs are known to deposit and remove such marks. The concept of a sex signal comprising competing XSEs and ASEs arose as a theory for fruit flies a century ago. Ironically, while the recent work of others showed that the fly sex signal does not fit this simple paradigm, our work shows that the worm signal does.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Cromossomos/genética , Processos de Determinação Sexual/genética , Cromossomo X/genética , Motivos de Aminoácidos , Animais , Asparagina , Sítios de Ligação , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose , Embrião não Mamífero/metabolismo , Feminino , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes de Helmintos/genética , Glutamina , Proteínas de Homeodomínio/genética , Masculino , Regiões Promotoras Genéticas/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Transcrição Gênica , Transposases/genética , Transposases/metabolismo
11.
Microb Cell Fact ; 19(1): 208, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33183275

RESUMO

BACKGROUND: In an effort to ensure future energy security, reduce greenhouse gas emissions and create domestic jobs, the US has invested in technologies to develop sustainable biofuels and bioproducts from renewable carbon sources such as lignocellulosic biomass. Bio-derived jet fuel is of particular interest as aviation is less amenable to electrification compared to other modes of transportation and synthetic biology provides the ability to tailor fuel properties to enhance performance. Specific energy and energy density are important properties in determining the attractiveness of potential bio-derived jet fuels. For example, increased energy content can give the industry options such as longer range, higher load or reduced takeoff weight. Energy-dense sesquiterpenes have been identified as potential next-generation jet fuels that can be renewably produced from lignocellulosic biomass. RESULTS: We developed a biomass deconstruction and conversion process that enabled the production of two tricyclic sesquiterpenes, epi-isozizaene and prespatane, from the woody biomass poplar using the versatile basidiomycete Rhodosporidium toruloides. We demonstrated terpene production at both bench and bioreactor scales, with prespatane titers reaching 1173.6 mg/L when grown in poplar hydrolysate in a 2 L bioreactor. Additionally, we examined the theoretical fuel properties of prespatane and epi-isozizaene in their hydrogenated states as blending options for jet fuel, and compared them to aviation fuel, Jet A. CONCLUSION: Our findings indicate that prespatane and epi-isozizaene in their hydrogenated states would be attractive blending options in Jet A or other lower density renewable jet fuels as they would improve viscosity and increase their energy density. Saturated epi-isozizaene and saturated prespatane have energy densities that are 16.6 and 18.8% higher than Jet A, respectively. These results highlight the potential of R. toruloides as a production host for the sustainable and scalable production of bio-derived jet fuel blends, and this is the first report of prespatane as an alternative jet fuel.


Assuntos
Biocombustíveis/microbiologia , Hidrocarbonetos/metabolismo , Rhodotorula/metabolismo , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Biomassa , Reatores Biológicos , Vias Biossintéticas , Biotecnologia/métodos , DNA Fúngico , Microbiologia Industrial , Lignina , Viabilidade Microbiana , Populus
12.
Microb Cell Fact ; 19(1): 24, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024522

RESUMO

BACKGROUND: Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. RESULTS: The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. CONCLUSION: This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Lignina/metabolismo , Engenharia Metabólica , Ustilaginales/metabolismo , Animais , Proteínas de Plantas/metabolismo
13.
J Bacteriol ; 201(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30988034

RESUMO

Plant cell walls contain a renewable, nearly limitless supply of sugar that could be used to support microbial production of commodity chemicals and biofuels. Imidazolium ionic liquid (IIL) solvents are among the best reagents for gaining access to the sugars in this otherwise recalcitrant biomass. However, the sugars from IIL-treated biomass are inevitably contaminated with residual IILs that inhibit growth in bacteria and yeast, blocking biochemical production by these organisms. IIL toxicity is, therefore, a critical roadblock in many industrial biosynthetic pathways. Although several IIL-tolerant (IILT) bacterial and yeast isolates have been identified in nature, few genetic mechanisms have been identified. In this study, we identified two IILTBacillus isolates as well as a spontaneous IILTEscherichia coli lab strain that are tolerant to high levels of two widely used IILs. We demonstrate that all three IILT strains contain one or more pumps of the small multidrug resistance (SMR) family, and two of these strains contain mutations that affect an adjacent regulatory guanidine riboswitch. Furthermore, we show that the regulation of E. colisugE by the guanidine II riboswitch can be exploited to promote IIL tolerance by the simple addition of guanidine to the medium. Our results demonstrate the critical role that transporter genes play in IIL tolerance in their native bacterial hosts. The study presented here is another step in engineering IIL tolerance into industrial strains toward overcoming this key gap in biofuels and industrial biochemical production processes.IMPORTANCE This study identifies bacteria that are tolerant to ionic liquid solvents used in the production of biofuels and industrial biochemicals. For industrial microbiology, it is essential to find less-harmful reagents and microbes that are resistant to their cytotoxic effects. We identified a family of small multidrug resistance efflux transporters, which are responsible for the tolerance of these strains. We also found that this resistance can be caused by mutations in the sequences of guanidine-specific riboswitches that regulate these efflux pumps. Extending this knowledge, we demonstrated that guanidine itself can promote ionic liquid tolerance. Our findings will inform genetic engineering strategies that improve conversion of cellulosic sugars into biofuels and biochemicals in processes where low concentrations of ionic liquids surpass bacterial tolerance.


Assuntos
Escherichia coli/genética , Guanidina/metabolismo , Imidazóis/farmacologia , Líquidos Iônicos/farmacologia , Proteínas de Membrana Transportadoras/genética , Riboswitch/genética , Biocombustíveis , Biomassa , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Edição de Genes , Regulação Bacteriana da Expressão Gênica , Mutação
14.
Microb Cell Fact ; 18(1): 54, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885220

RESUMO

BACKGROUND: Due to their high energy density and compatible physical properties, several monoterpenes have been investigated as potential renewable transportation fuels, either as blendstocks with petroleum or as drop-in replacements for use in vehicles (both heavy and light-weight) or in aviation. Sustainable microbial production of these biofuels requires the ability to utilize cheap and readily available feedstocks such as lignocellulosic biomass, which can be depolymerized into fermentable carbon sources such as glucose and xylose. However, common microbial production platforms such as the yeast Saccharomyces cerevisiae are not naturally capable of utilizing xylose, hence requiring extensive strain engineering and optimization to efficiently utilize lignocellulosic feedstocks. In contrast, the oleaginous red yeast Rhodosporidium toruloides is capable of efficiently metabolizing both xylose and glucose, suggesting that it may be a suitable host for the production of lignocellulosic bioproducts. In addition, R. toruloides naturally produces several carotenoids (C40 terpenoids), indicating that it may have a naturally high carbon flux through its mevalonate (MVA) pathway, providing pools of intermediates for the production of a wide range of heterologous terpene-based biofuels and bioproducts from lignocellulose. RESULTS: Sixteen terpene synthases (TS) originating from plants, bacteria and fungi were evaluated for their ability to produce a total of nine different monoterpenes in R. toruloides. Eight of these TS were functional and produced several different monoterpenes, either as individual compounds or as mixtures, with 1,8-cineole, sabinene, ocimene, pinene, limonene, and carene being produced at the highest levels. The 1,8-cineole synthase HYP3 from Hypoxylon sp. E74060B produced the highest titer of 14.94 ± 1.84 mg/L 1,8-cineole in YPD medium and was selected for further optimization and fuel properties study. Production of 1,8-cineole from lignocellulose was also demonstrated in a 2L batch fermentation, and cineole production titers reached 34.6 mg/L in DMR-EH (Deacetylated, Mechanically Refined, Enzymatically Hydorlized) hydrolysate. Finally, the fuel properties of 1,8-cineole were examined, and indicate that it may be a suitable petroleum blend stock or drop-in replacement fuel for spark ignition engines. CONCLUSION: Our results demonstrate that Rhodosporidium toruloides is a suitable microbial platform for the production of non-native monoterpenes with biofuel applications from lignocellulosic biomass.


Assuntos
Biocombustíveis/microbiologia , Lignina/metabolismo , Monoterpenos/metabolismo , Ustilaginales/metabolismo , Biomassa , Carotenoides/metabolismo , Fermentação
15.
Microb Cell Fact ; 18(1): 117, 2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31255171

RESUMO

BACKGROUND: Rhodosporidium toruloides is a promising host for the production of bioproducts from lignocellulosic biomass. A key prerequisite for efficient pathway engineering is the availability of robust genetic tools and resources. However, there is a lack of characterized promoters to drive expression of heterologous genes for strain engineering in R. toruloides. RESULTS: This data describes a set of native R. toruloides promoters, characterized over time in four different media commonly used for cultivation of this yeast. The promoter sequences were selected using transcriptional analysis and several of them were found to drive expression bidirectionally. Promoter expression strength was determined by measurement of EGFP and mRuby2 reporters by flow cytometry. A total of 20 constitutive promoters (12 monodirectional and 8 bidirectional) were found, and are expected to be of potential value for genetic engineering of R. toruloides. CONCLUSIONS: A set of robust and constitutive promoters to facilitate genetic engineering of R. toruloides is presented here, ranging from a promoter previously used for this purpose (P7, glyceraldehyde 3-phosphate dehydrogenase, GAPDH) to stronger monodirectional (e.g., P15, mitochondrial adenine nucleotide translocator, ANT) and bidirectional (e.g., P9 and P9R, histones H3 and H4, respectively) promoters. We also identified promoters that may be useful for specific applications such as late-stage expression (e.g., P3, voltage-dependent anion channel protein 2, VDAC2). This set of characterized promoters significantly expands the range of engineering tools available for this yeast and can be applied in future metabolic engineering studies.


Assuntos
Engenharia Metabólica , Regiões Promotoras Genéticas , Rhodotorula/genética , Sequência de Bases , Rhodotorula/metabolismo , Transformação Genética
16.
Appl Microbiol Biotechnol ; 102(4): 1797-1807, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29305699

RESUMO

Plant biomass, once reduced to its composite sugars, can be converted to fuel substitutes. One means of overcoming the recalcitrance of lignocellulose is pretreatment followed by enzymatic hydrolysis. However, currently available commercial enzyme cocktails are inhibited in the presence of residual pretreatment chemicals. Recent studies have identified a number of cellulolytic enzymes from bacteria that are tolerant to pretreatment chemicals such as ionic liquids. The challenge now is generation of these enzymes in copious amounts, an arena where fungal organisms such as Aspergillus niger have proven efficient. Fungal host strains still need to be engineered to increase production titers of heterologous protein over native enzymes, which has been a difficult task. Here, we developed a forward genetics screen coupled with whole-genome resequencing to identify specific lesions responsible for a protein hyper-production phenotype in A. niger. This strategy successfully identified novel targets, including a low-affinity glucose transporter, MstC, whose deletion significantly improved secretion of recombinant proteins driven by a glucoamylase promoter.


Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/genética , Enzimas/biossíntese , Enzimas/genética , Expressão Gênica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Testes Genéticos , Mutagênese , Mutação , Sequenciamento Completo do Genoma
17.
Appl Microbiol Biotechnol ; 101(6): 2603-2618, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28078400

RESUMO

Recently, several endophytic fungi have been demonstrated to produce volatile organic compounds (VOCs) with properties similar to fossil fuels, called "mycodiesel," while growing on lignocellulosic plant and agricultural residues. The fact that endophytes are plant symbionts suggests that some may be able to produce lignocellulolytic enzymes, making them capable of both deconstructing lignocellulose and converting it into mycodiesel, two properties that indicate that these strains may be useful consolidated bioprocessing (CBP) hosts for the biofuel production. In this study, four endophytes Hypoxylon sp. CI4A, Hypoxylon sp. EC38, Hypoxylon sp. CO27, and Daldinia eschscholzii EC12 were selected and evaluated for their CBP potential. Analysis of their genomes indicates that these endophytes have a rich reservoir of biomass-deconstructing carbohydrate-active enzymes (CAZys), which includes enzymes active on both polysaccharides and lignin, as well as terpene synthases (TPSs), enzymes that may produce fuel-like molecules, suggesting that they do indeed have CBP potential. GC-MS analyses of their VOCs when grown on four representative lignocellulosic feedstocks revealed that these endophytes produce a wide spectrum of hydrocarbons, the majority of which are monoterpenes and sesquiterpenes, including some known biofuel candidates. Analysis of their cellulase activity when grown under the same conditions revealed that these endophytes actively produce endoglucanases, exoglucanases, and ß-glucosidases. The richness of CAZymes as well as terpene synthases identified in these four endophytic fungi suggests that they are great candidates to pursue for development into platform CBP organisms.


Assuntos
Endófitos/enzimologia , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Lignina/metabolismo , Xylariales/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Biocombustíveis , Celulase/genética , Celulase/metabolismo , Celulases/genética , Celulases/metabolismo , Endófitos/classificação , Endófitos/genética , Proteínas Fúngicas/genética , Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Monoterpenos/metabolismo , Filogenia , Polissacarídeos/metabolismo , Sesquiterpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Xylariales/classificação , Xylariales/genética
18.
Genes Dev ; 23(5): 602-18, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19270160

RESUMO

In many species, a dosage compensation complex (DCC) is targeted to X chromosomes of one sex to equalize levels of X-gene products between males (1X) and females (2X). Here we identify cis-acting regulatory elements that target the Caenorhabditis elegans X chromosome for repression by the DCC. The DCC binds to discrete, dispersed sites on X of two types. rex sites (recruitment elements on X) recruit the DCC in an autonomous, DNA sequence-dependent manner using a 12-base-pair (bp) consensus motif that is enriched on X. This motif is critical for DCC binding, is clustered in rex sites, and confers much of X-chromosome specificity. Motif variants enriched on X by 3.8-fold or more are highly predictive (95%) for rex sites. In contrast, dox sites (dependent on X) lack the X-enriched variants and cannot bind the DCC when detached from X. dox sites are more prevalent than rex sites and, unlike rex sites, reside preferentially in promoters of some expressed genes. These findings fulfill predictions for a targeting model in which the DCC binds to recruitment sites on X and disperses to discrete sites lacking autonomous recruitment ability. To relate DCC binding to function, we identified dosage-compensated and noncompensated genes on X. Unexpectedly, many genes of both types have bound DCC, but many do not, suggesting the DCC acts over long distances to repress X-gene expression. Remarkably, the DCC binds to autosomes, but at far fewer sites and rarely at consensus motifs. DCC disruption causes opposite effects on expression of X and autosomal genes. The DCC thus acts at a distance to impact expression throughout the genome.


Assuntos
Adenosina Trifosfatases/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genoma Helmíntico/fisiologia , Complexos Multiproteicos/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Consenso/genética , Feminino , Genoma Helmíntico/genética , Masculino , Ligação Proteica , Elementos Reguladores de Transcrição , Cromossomo X/genética , Cromossomo X/metabolismo
19.
PLoS One ; 19(10): e0305336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39378235

RESUMO

Sustainably grown biomass is a promising alternative to produce fuels and chemicals and reduce the dependency on fossil energy sources. However, the efficient conversion of lignocellulosic biomass into biofuels and bioproducts often requires extensive testing of components and reaction conditions used in the pretreatment, saccharification, and bioconversion steps. This restriction can result in a significant and unwieldy number of combinations of biomass types, solvents, microbial strains, and operational parameters that need to be characterized, turning these efforts into a daunting and time-consuming task. Here we developed a high-throughput feedstocks-to-fuels screening platform to address these challenges. The result is a miniaturized semi-automated platform that leverages the capabilities of a solid handling robot, a liquid handling robot, analytical instruments, and a centralized data repository, adapted to operate as an ionic-liquid-based biomass conversion pipeline. The pipeline was tested by using sorghum as feedstock, the biocompatible ionic liquid cholinium phosphate as pretreatment solvent, a "one-pot" process configuration that does not require ionic liquid removal after pretreatment, and an engineered strain of the yeast Rhodosporidium toruloides that produces the jet-fuel precursor bisabolene as a conversion microbe. By the simultaneous processing of 48 samples, we show that this configuration and reaction conditions result in sugar yields (~70%) and bisabolene titers (~1500 mg/L) that are comparable to the efficiencies observed at larger scales but require only a fraction of the time. We expect that this Feedstocks-to-Fuels pipeline will become an effective tool to screen thousands of bioenergy crop and feedstock samples and assist process optimization efforts and the development of predictive deconstruction approaches.


Assuntos
Biocombustíveis , Biomassa , Lignina , Sorghum , Lignina/metabolismo , Lignina/química , Biocombustíveis/análise , Sorghum/metabolismo , Líquidos Iônicos/química
20.
ChemSusChem ; 17(16): e202301460, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669480

RESUMO

The valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino-refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin-utilizing biorefineries. This review also highlights the integration of chemical and biological lignin depolymerization and identifies research gaps while also recommending future directions for scaling processes to establish a lignino-chemical industry.


Assuntos
Lignina , Lignina/química , Biomassa , Polimerização , Biocombustíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA